Journal of Colloid and Interface Science, Vol.385, 235-243, 2012
Chitosan adsorption on hydroxyapatite and its role in preventing acid erosion
Polymer adsorption onto an artificial saliva (AS) layer is investigated using quartz-crystal microbalance with dissipation (QCM-D) and chitosan as the model polymer. QCM-D is utilized in an innovative manner to monitor in situ adsorption of chitosan (CH) onto a hydroxyapatite (HA) coated crystal and to examine the ability of the adsorbed layer to "protect" the HA upon sequential exposure to acidic solutions. After deposition of a thin AS layer (16 nm), the total thickness on the HA substrate increases to 37 nm upon exposure to CH at pH 5.5 for 10 min. Correspondingly, the surface charge changes from negative (i.e., AS) to positive, consistent with the adsorption the polycationic CH onto or into the AS layer. Upon exposure to an oxidizing agent, the chitosan cross-links and collapses as noted by a decrease in thickness to 10 nm and an increase in the shear modulus by an order of magnitude. Atomic force microscopy (AFM) is used to determine the surface morphology and RMS roughness of the coated and HA surfaces after citric acid challenges. Both physisorbed and cross-linked chitosan are demonstrated to limit and prevent the erosion of HA, respectively. (c) 2012 Elsevier Inc. All rights reserved.
Keywords:Chitosan;Hydroxyapatite;HA;Acid erosion;In situ quartz-crystal microbalance with dissipation;QCM-D;Atomic force microscopy;AFM;Polymer adsorption