화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.383, 118-123, 2012
Ordering evolution of block copolymer thin films upon solvent-annealing process
Morphologies of polystyrene-block-poly(2-vinylpyridine) copolymer (S2VP) thin films, which are forming poly(2-vinylpyridine) cylinders in bulk phase, were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM) to account for their ordering behavior induced by solvent annealing. Initially, when the copolymer was dissolved in toluene, which is selective solvent for majority polystyrene (PS) blocks, and was spin-coated on Si substrates, dimple-type micellar structures of S2VP were formed. After the film was placed in a solvent-annealing chamber covered with a lid under the existence of chloroform, surface morphologies of S2VP were measured as a function of annealing time. In this study, it was found that the morphologies of S2VP thin film repeated the cycle of the creation and extinction of various morphologies on ordering process. Namely, S2VP exhibited the various transformations between different morphologies, including highly disordered state, cylinders normal to the plane, and cylinders parallel to the plane. Each of the morphologies observed here was employed as a template to synthesize gold (Au) nanoparticles or nanowires. The arrays of Au nano-objects were used to tune a surface plasmon resonance. (C) 2012 Elsevier Inc. All rights reserved.