화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.377, 153-159, 2012
Dynamic characterization of extremely bidisperse magnetorheological fluids
In this work, we investigate the stability and redispersibility of magnetorheological fluids (MRFs). These are disperse systems where the solid is constituted by ferro- or ferri-magnetic microparticles. Upon the application of external magnetic field, they experience rapid and reversible increases in yield stress and viscosity. The problem considered here is first of all the determination of their stability against sedimentation, an essential issue in their practical application. Although this problem is typically faced through the addition of thixotropic agents to the liquid medium, in this work, we propose the investigation of the effect of magnetic nanoparticles addition, so that the dispersion medium is in reality a ferrofluid. It is found that a volume fraction of nanoparticles not higher than 3% is enough to provide a long-lasting stabilization to MRFs containing above 30% iron microparticles. In the, in fact unavoidable, event of settling, the important point is the ease of redispersion of the sediment. This is indirectly evaluated in the present investigation by measuring the penetration force in the suspension, using a standard hardness needle. Again, it is found that the nanoparticles addition produces soft sediments by avoiding short-range attractions between the large iron particles. Finally, the performance of the designed MRFs is evaluated by obtaining their steady-state rheograms for different volume fractions of magnetite and different magnetic field strengths. The yield stress is found to be strongly field-dependent, and it can achieve the high values expected in standard magnetorheological fluids but with improved stability and redispersibility. (C) 2012 Elsevier Inc. All rights reserved.