화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.367, 120-128, 2012
An efficient route to aqueous phase synthesis of nanocrystalline gamma-Al2O3 with high porosity: From stable boehmite colloids to large pore mesoporous alumina
In this paper we emphasise the important role of Pluronic F127 on the porosity of mesoporous alumina prepared from boehmite colloids. By focusing on the F127/boehmite interactions we show how the concepts of interface science may help to predict and improve the textural characteristics of mesoporous alumina. By varying the synthetic parameters, in particular the copolymer content, we show that the porosity of gamma-Al2O3 can be enhanced by 400% and the average pore diameter can be expanded from 5 to 14 nm. These results are discussed in terms of interactions between the Pluronic F127 and boehmite colloids, and are correlated to the critical micelle concentration (CMC) of the copolymer. The textural characteristics of the mesoporous alumina can be further improved either by introducing hydrocarbons in the preformed boehmite/copolymer sols or by concentrating the sols. In comparison with as-synthesised alumina, those prepared with F127 showed improved thermal stability. Furthermore, boehmite/copolymer sols were stable for all surfactant concentrations investigated and can give high quality coatings suitable for catalytic applications. (C) 2011 Elsevier Inc. All rights reserved.