화학공학소재연구정보센터
Journal of Catalysis, Vol.305, 135-145, 2013
Selective oxidation of ethanol to acetaldehyde by Au-Ir catalysts
The use of Ir as a reactive transition metal for O-2 activation to facilitate the selective oxidation of ethanol to acetaldehyde is explored. Co-impregnation of the chlorides of Au and Iron SiO2 followed by reduction afforded small bimetallic nanoparticles with a varying Au/Ir ratio. All of the nanoparticle catalysts including the monometallic Au and Ir end members have sizes in the range of 2-3 nm. Infrared spectroscopy of adsorbed CO on the reduced catalysts evidences the formation of alloyed nanoparticles. After oxidation at room temperature and at 200 degrees C, the Ir surface atoms are oxidized. No synergy between Au and Ir is observed in CO oxidation. Au lowers the CO oxidation activity of the pure Ir catalyst, suggesting the presence of surface Au atoms in the mildly oxidized Au-Ir bimetallic catalysts. At higher oxidation temperatures, viz. 350 and 500 degrees C, bulk oxidation of Jr occurs. While pure Jr nanoparticles sinter upon oxidation at elevated temperatures (350-500 degrees C), the presence of Au significantly retards this agglomeration of the nanopartides. At these elevated temperatures, an intimate mixture of reduced Au and IrOx is formed. The Au-Ir nanoparticles display enhanced activity in ethanol oxidation to acetaldehyde, outperforming their monometallic counterparts, with only minimum loss of C2-oxygenates selectivity compared to the pure Au nanoparticle catalyst. The maximum activity is obtained for a Au-Ir-3 composition. The present results can be explained by a model involving an intimate contact between Au sites for (dissociative) ethanol adsorption and Jr sites covered by O adatoms which catalyze C-H bond cleavage to yield acetaldehyde. (C) 2013 Elsevier Inc. All rights reserved.