화학공학소재연구정보센터
International Journal of Multiphase Flow, Vol.37, No.3, 278-292, 2011
Experimental study of air-water flow in downward sloping pipes
This paper presents results from seven experimental facilities on the co-current flow of air and water in downward sloping pipes. As a function of the air flow rate, pipe diameter and pipe slope, the required water discharge to prevent air accumulation was determined. In case the water discharge was less than the required water discharge, the air accumulation and additional gas pocket head loss were measured. Results show that volumetric air discharge as small as 0.1% of the water discharge accumulate in a downward sloping section. The experimental data cover all four flow regimes of water-driven air transport: stratified, blow-back, plug and dispersed bubble flow. The analysis of the experimental results shows that different dimensionless numbers characterise certain flow regimes. The pipe Froude number determines the transition from blow-back to plug flow. The gas pocket head loss in the blow-back flow regime follows a pipe Weber number scaling. A numerical model for the prediction of the air discharge as a function of the relevant system parameters is proposed. The novelty of this paper is the presentation of experimental data and a numerical model that cover all flow regimes on air transport by flowing water in downward inclined pipes. (C) 2010 Elsevier Ltd. All rights reserved.