화학공학소재연구정보센터
International Journal of Multiphase Flow, Vol.37, No.2, 215-228, 2011
Visualization study of the effects of nanoparticles surface deposition on convective flow boiling CHF from a short heated wall
Enhancements of nucleate boiling critical heat flux (CHF) using nanofluids in a pool boiling are well known. Considering importance of flow boiling heat transfer in various practical applications, an experimental study on CHF enhancements of nanofluids under convective flow conditions was performed. Changing flow velocity from 0 m/s to 4 m/s, the water boiling on nanoparticles-coated heater was conducted and CHF increased at a given velocity. To understand clearly the mechanism of flow boiling CHF enhancement in nanofluid, the visualization of the nucleate boiling and CHF phenomenon was conducted using the high-speed video camera. It was found that the boiling heat transfer on the nanoparticles-coated heater was lower than that on bare heater, which induced the different flow regime at same heat flux. The different wetting zone on bare and nanoparticles-coated heaters was observed by visualization study. Based the wetting zone fraction, there was brief that the nucleate boiling fraction on heater would be related with the surface wettability. A new concept of flow boiling model was proposed based on the wetting zone fraction. Finally, the effect of nanoparticles deposition layer on the heater was interpreted with the physical mechanisms to increase CHF. (C) 2010 Elsevier Ltd. All rights reserved.