International Journal of Multiphase Flow, Vol.31, No.1, 115-140, 2005
The liquid deposition fraction of sprays impinging vertical walls and flowing films
The impingement of coarse sprays with a mean diameter in the order of millimeters on vertical walls with and without an additionally supplied wall film was studied at conditions well below the Leidenfrost limit. The fraction of the sprayed liquid deposited on the wall was determined experimentally and theoretically for various impingement angles with the help of a flat fan spray directed against the wall. The deposition fraction shows a distinct minimum in the range of intermediate impingement angles. This fact cannot be described by single-droplet-based deposition-splash criteria when considering the droplet's impact momentum alone. The investigation demonstrates that the measurement results can be explained by including the collision of splashed droplets with incoming ones. In principle, the entrainment of the primary spray's fine fraction in the gas flow field may also be of relevance. For the coarse and relatively sparse sprays investigated, the importance of the collisions in determining the overall balance of deposited and splashed liquid was estimated by event statistics derived from Monte Carlo simulations. The main outcome of wall interaction for the coarse spray is splashing. The splashed droplets form a secondary spray. When the impingement angle is steep, the splashed liquid is redirected towards the wall as a result of the collision between the incoming primary spray and splashed droplets. (C) 2004 Elsevier Ltd. All rights reserved.
Keywords:spray/wall interaction;spray impingement angle;liquid deposition;splash criterion;inter-droplet collision