화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.39, No.12, 6675-6679, 2014
Electrochemical characterization of La0.6Ca0.4Fe0.8Ni0.2O3 cathode on Ce0.8Gd0.2O1.9 electrolyte for IT-SOFC
For Solid Oxide Fuel Cells (SOFCs) to become an economically attractive energy conversion technology, suitable materials and structures which enable operation at lower temperatures, while retaining high cell performance, must be developed. Recently, the perovskite-type La0.6Ca0.4Fe0.8Ni0.2O3 oxide has shown potential as an intermediate temperature SOFC cathode. An equivalent circuit describing the cathode polarization resistances was constructed from analyzing impedance spectra recorded at different temperatures in oxygen. A competitive electrode polarization resistance is reported for this oxygen electrode using a Ce0.8Gd0.2O1.9 electrolyte, determined by impedance spectroscopy studies of symmetrical cells sintered at 800 degrees C and 1000 degrees C. Scanning electron microscopy (SEM) studies of the symmetrical cells revealed the absence of any reaction layer between cathode and electrolyte, and a porous electrode microstructure even when sintered at a temperature of only 800 degrees C. The performance of this cathode shows favorable oxygen reduction reaction (ORR) properties potentially making it an excellent choice for IT-SOFC application. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.