화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.39, No.1, 469-480, 2014
Numerical investigation of the impact of two-phase flow maldistribution on PEM fuel cell performance
Flow maldistribution usually happens in PEM fuel cells when using common inlet and exit headers to supply reactant gases to multiple channels. As a result, some channels are flooded with more water and have less air flow while other channels are filled with less water but have excessive air flow. To investigate the impact of two-phase flow maldistribution on PEM fuel cell performance, a Volume of Fluid (VOF) model coupled with a 1D MEA model was employed to simulate two parallel channels. The slug flow pattern is mainly observed in the flow channels under different flow maldistribution conditions, and it significantly increases the gas diffusion layer (GDL) surface water coverage over the whole range of simulated current densities, which directly leads to poor fuel cell performance. Therefore, it is recommended that liquid and gas flow maldistribution in parallel channels should be avoided if possible over the whole range of operation. Increasing the gas stoichiometric flow ratio is not an effective method to mitigate the gas flow maldistribution, but adding a gas inlet resistance to the flow channel is effective in mitigating maldistribution. With a carefully selected value of the flow resistance coefficient, both the fuel cell performance and the gas flow distribution can be significantly improved without causing too much extra pressure drop. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.