International Journal of Hydrogen Energy, Vol.38, No.26, 11421-11428, 2013
Flame front structure and burning velocity of turbulent premixed CH4/H-2/air flames
Flame front structure of turbulent premixed CH4/H-2/air flames at various hydrogen fractions was investigated with OH-PLIF technique. A nozzle-type burner was used to achieve the stabilized turbulent premixed flames. Hot-wire anemometer measurement and OH-PLIF observation were performed to measure the turbulent flow and, detect the instantaneous flame front structure, respectively. The hydrogen fractions of 0%, 5%, 10% and 20% were studied. Results show that the flame front structures of the turbulent premixed flames are wrinkled flame front with small scale convex and concave structures compared to that of the laminar-flame front. The wrinkle intensity of flame front is promoted with the increase of turbulence intensity as well as hydrogen fraction. Hydrogen addition promotes the flame intrinsic instability which leads to the active response of laminar flame to turbulence and results in the much more wrinkled flame front structure. The value of S-T/S-L increases monotonically with the increase of u'/S-L and hydrogen fraction. The increase of S-T/S-L with the increase of hydrogen fraction is mainly attributed to the diffusive-thermal instability effects represented by the effective Lewis number, Le(eff). A general correlation between S-T/S-L and u'/S-L is provided from the experimental data fitting in the form of S-T/S-L alpha a(u'/S-L)(n), and the exponent, n, gives the constant value of 0.35 for all conditions and at various hydrogen fractions. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.