화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.38, No.25, 10889-10895, 2013
Improvement of heat transfer model for adsorptive hydrogen storage system
Hydrogen adsorption on high surface area activated carbon is an effective solution of hydrogen storage. Improvement is necessary for the heat transfer model of adsorptive hydrogen storage system. Distributed and lumped parameter models are implemented by the Comsol software and Matlab/Simulink software respectively. The evolution of pressure and temperature during charge and discharge processes is investigated. We adopted following measures for a further improvement on the model: (1) Wall temperature is improved by varying heat transfer coefficient; (2) A more realistic geometry with insert tube improves near inlet temperature; (3) Lumped parameter model is improved by considering thermal conductivity; (4) Distributed and lumped parameter models are well validated by experiments; (5) Heat transfer is modeled under conditions of air cooling and water cooling. The water cooling condition is better than air cooling condition in decreasing the temperature of the storage tank and improving the storage capacity. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.