International Journal of Hydrogen Energy, Vol.38, No.12, 4889-4900, 2013
Design of a combined heat, hydrogen, and power plant from university campus waste streams
This paper presents analysis of a combined heat, hydrogen, and power (CHHP) plant for waste-to-energy conversion in response to the 2012 Hydrogen Student Design Contest. Our team designed the CHHP plant centered on a molten carbonate fuel cell (Fuel Cell Energy DFC-1500) fueled by syngas derived primarily from an oxygen-fed municipal waste gasifier. Catalytic methanation and supplemental utility natural gas increase the fuel methane content to meet the DFC-1500 fueling requirements for maintaining stack thermal energy balance. Internal reforming converts excess fuel from the fuel cell to an H-2-rich stream, which is purified downstream in a pressure-swing adsorption system. The separated H-2 (1000 kg per day) is compressed for storage to provide fuel for a campus fleet of PEM fuel cell buses. The system provides more than 1.1 MWe for the campus grid with approximately 20% of the fuel cell power used for H-2 compression and running the plant. Heat recovery steam generators provide steam for the methanation reactor and 0.4 MW of thermal energy for district heating or steam turbine-driven chillers. Cost analysis indicates that the system requires incentives for economic viability with current estimated operating costs, but advances to reduce capital expenses of comparable urban waste-driven CHHP systems can make them attractive for future implementation.
Keywords:Molten carbonate fuel cell;Hydrogen;Combined heat and power;Waste energy conversion;Polygeneration