International Journal of Hydrogen Energy, Vol.37, No.15, 11458-11465, 2012
Onset of cellular instabilities in spherically propagating hydrogen-air premixed laminar flames
Using high-speed Schlieren and Shadow photography, the instabilities of outwardly propagating spherical hydrogen-air flames have been studied in a constant volume combustion bomb. Combustion under different equivalence ratios (0.2 similar to 1.0), temperatures (298 K similar to 423 K) and pressures (1.0 bar similar to 10.0 bar) is visualized. The results show that flames experience both unequal diffusion and/or hydrodynamic instabilities at different stages of propagation. The critical flame radius for such instabilities is measured and correlated to the variations of equivalence ratio, temperature and pressure. Analysis revealed that equivalence ratio affects unequal diffusion instability via varying the Lewis number, Le; increased temperature can delay both types of instabilities in the majority of tests by promoting combustion rate and changing density ratio; pressure variation has minor effect on unequal diffusion instability but is responsible for enhancing hydrodynamic instability, particularly for stoichiometric and near-stoichiometric flames. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Keywords:Hydrogen combustion;Premixed laminar flames;Flame instabilities;Onset of cellular instabilities;Combustion bomb