화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.37, No.13, 10064-10069, 2012
Dynamic model of wind energy conversion systems with PMSG-based variable-speed wind turbines for power system studies
(I)n order to study the impact of a wind farm on the dynamics of the power system, a significant issue is to develop appropriate equivalent models that allow characterizing the dynamics of all individual wind turbine generators (WTGs) composing the park. In this sense, with the advance of power electronics, direct-driven permanent magnet synchronous generators (PMSGs) have drawn increased interest to wind turbine manufacturers due to their advantages over other variable-speed WTGs. These include the possibility of multi-pole design with a gearless construction that offers slow speed operation and reduced maintenance since no brushes are used, elimination of the excitation system, full controllability for maximum wind power extraction and grid interface, and easiness in accomplishing fault-ride through and grid support. In this way, this paper presents a comprehensive dynamic equivalent model of a wind farm with direct-driven PMSG wind turbines using full-scale converters and its control scheme. The proposed simplified modelling is developed using the state-space averaging technique and is implemented in the MATLAB/Simulink environment. The dynamic performance of the wind farm and its impact on the power system operation is evaluated using the phasor simulation method. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.