화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.4, 396-401, June, 2000
초임계 이산화탄소-Poly(ethyl methacrylate)계의 상거동에 관한 단량체 농도의 영향
Effect of Monomer Concentration on the Phase Behavior of Supercritical Carbon Dioxide-Poly(ethyl methacrylate) Mixture
E-mail:
초록
이성분계인 CO2-ethyl methacrylate (EMA) 혼합물에 대해 압력-농도 관계의 상거동 실험을 온도 40, 70 및 100℃에서 수행하였으며, 이때 압력은 12~32 bar 범위였다. CO2-EMA 계에 대해 동일 압력에서 CO2의 용해도는 온도가 증가함에 따라 감소함을 보였다. CO2-EMA 계의 실험결과를 Peng-Robinson 상태방정식에 적용하였다. 온도에 독립적인 파라미터를 이용하여 계산한 계산치와 실험치를 비교하여 나타내었으며, CO2와 EMA의 임계온도 사이에서 혼합물 임계압력 곡선을 압력-온도 관계로 실험치와 계산치의 궤적을 나타내었다. 또한 초임계 이산화탄소-Poly(ethyl methacrylate) (PEMA) EMA 혼합물에 대해 온도 41~217℃, 압력 1200 bar 까지 상거동 실험을 수행하였으며, 이때 EMA 농도는 12.5, 25.3 및 38.2wt%에서 각각 상거동자료를 얻었다. 단량체의 농도가 증가함에 따라 음의 기울기에서 양의 기울기로 변화되는 과정을 나타내었다. 그리고 PEMA-CO2 혼합물에 EMA의 농도를 45.7wt%로 첨가하여 상거동 변화를 나타내었으며, EMA의 농도가 45.7wt%일 때 삼상(LLV)이 나타났다. PEMA-CO2 혼합물은 온도 265℃, 압력 3000 bar 범위내에서는 용해되지 않았다.
Pressure-composition isotherms are shown for the CO2-ethyl methacrylate (EMA) at 40, 70, and 100℃ and pressure from 12 to 132 bar. The CO2 solubility for the CO2-EMA system decreases as the temperature increases at constant pressure. The experimental results for the CO2-EMA system were modeled using the Peng-Robinson equation of state with temperature-independent parameters. The experimental data were compared with the calculated data by Peng-Robinson equation of state. The CO2-EMA system has continuous critical mixture curves that exhibit maximums pressure at temperatures between the critical temperatures of CO2 and EMA. Phase behavior data for temary poly(ethyl methacrylate)(PEMA)-CO2-EMA are measured in the temperature range of 41 to 217℃, to pressure as high as 1200 bar, for cosolvent concentrations of 12.5, 25.3 and 38.2 wt%. The pressure-temperature slope of the phase behavior curves changes from negative to positives as the monomer concentration increases. The addition of 45.7 wt% EMA to PEMA-CO2 shows the change of LLV phase behavior. The PEMA-pure Co2 system not dissolve at 265℃ and 3000 bar.
  1. McHugh MA, Rindfleisch F, Kuntz PT, Schmaltz C, Buback M, Polymer, 39(24), 6049 (1998) 
  2. DeSimone JM, Guan Z, Elsbernd CS, Science, 257, 945 (1992) 
  3. Buback M, Droge T, Macromol. Chem. Phys., 200, 256 (1999) 
  4. Canelas D, DeSimone JM, Adv. Polym. Sci., 133, 103 (1997)
  5. McHugh MA, Guckes TL, Macromolecules, 18, 674 (1985) 
  6. Pan C, Radosz M, Ind. Eng. Chem. Res., 38(7), 2842 (1999) 
  7. Kinzl M, Luft G, Adidharma H, Radosz M, Ind. Eng. Chem. Res., pending (1999)
  8. Cowie JMG, McEwen IJ, J. Chem. Soc.-Faraday Trans., 70, 171 (1974)
  9. Wolf BA, Blaum G, J. Polym. Sci. B-Polym. Phys., 13, 1115 (1975)
  10. Wolf BA, Blaum G, Makromol. Chem., 177, 1073 (1976) 
  11. Lora M, McHugh MA, Fluid Phase Equilib., 157(2), 285 (1999) 
  12. Chen AQ, Rodosz M, J. Chem. Eng. Data, 44, 854 (1999) 
  13. Rindfleisch F, DiNoia TP, McHugh MA, J. Phys. Chem. B, 100, 15581 (1996) 
  14. Byun HS, Hasch BM, McHugh MA, Mahling FO, Busch M, Buback M, Macromolecules, 29(5), 1625 (1996) 
  15. Byun HS, Hasch BM, McHugh MA, Fluid Phase Equilib., 115(1-2), 179 (1996) 
  16. Byun HS, Jeon NS, Fluid Phase Equilib., 167(1), 113 (2000) 
  17. Reid RC, Prausnitz JM, Polling BE, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New-York (1987)
  18. Vargaftik NB, Handbook of Physical Properties of Liquid and Gases, Springer-Verlag, Berlin (1983)
  19. Daubert TE, Danner RP, Data Compilation of Properties of Pure Compounds, Part 1, 2, 3, and 4, DIPPR Project, AIChE, New York (1985)
  20. McHugh MA, Krukonis VJ, Supercritical Fluid Extraction : Principles and Practice, 2nd ed., Stoneham, Butterworth, MA (1994)
  21. Scott RL, van Konynenburg PB, Discuss. Faraday Soc., 49, 87 (1970) 
  22. Kirby CF, McHugh MA, Chem. Rev., 99(2), 565 (1999) 
  23. Peng DY, Robinson DB, Ind. Eng. Chem. Res. Fundam., 15, 59 (1976) 
  24. Byun HS, Kim K, HWAHAK KONGHAK, accepted (2000)