Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.4, 366-370, June, 2000
곁사슬에 알콕시 그룹을 갖는 새로운 전방향족 폴리에스테르의 합성 및 특성
Synthese and Properties of New Wholly Aromatic Polyesters Having Alkoxy Group in the Side Chains
E-mail:
초록
곁사슬에 알콕시 그룹을 갖는 일련의 새로운 전방향족 폴리에스테르를 1,4-bis(p-hydroxybenxolyloxy)benzene과 2,5-dialkoxyterephthaloyl chloride를 사용하여 용액중합법에 의하여 합성하였다. 이들 중합체들은 H-NMR, FT-IR, DSC, TGA, 편광현미경 및 X-ray 분석기 등을 사용하여 여러 가지 특성조사를 행하였다. 중합체들의 고유점도(ηinh)는 0.56gL/g이었고, 유리전이온도(Tg), 용융온도(Tm) 및 초기 열분해온도(Tdi)의 경우 곁사슬의 길이가 증가함에 따라 감소하는 경향을 보였다. 곁사슬을 갖는 모든 중합체들은 용융온도 이상에서 네마틱 액정상임을 나타내는 schlieren 무늬가 관찰되었다. X-선 분석결과 n=1 인 중합체를 제외한 모든 중합체들은 낮은 각도 영역에서 예리한 회절곡선이 관찰되었고, 이들이 층상구조 형태로 결정화 되었음을 확인하였다.
A series of new wholly aromatic polyesters having alkoxy group in the side chains were synthesized by the solution polycondensation from 2,5-dialkoxyterephthaloyl chlorides with 1,4-bis(p-hydroxybenxolyloxy)benzene. The resulting polyesters have been characterized by H-NMR, FT-IR, DSC, TGA, optical polarizing microscope and x-ray diffractometer. The inherent viscosities (ηinh) measured at 35℃ in phenol/p-chlorophenol/1,1,2,2-tetrachloroethane(24/40/35 w/w/w) were 0.56~0.98 dL/g. The glass transition temperature (Tg) and the melting temperature(Tm) decreased with increasing the length of the alkoxy side chain. The initial decomposition temperatures as measured by TGA occurred at 338~369℃ in N2 gas and thermal stability decreased with increasing the length of the side chains. Above the melting temperature, the polymers showed the schieren textures which are indicative a nematic phase. WAXS-diffractograms showed that the polymers with side chains were crystalline at room temperature. Especially, analysis of a few sharp reflections in the small-angle region, suggests that these polymers crystallize to layered structures.
- Cottis SG, Economy J, Nowak BE, U.S. Patent, 3,637,595 (1972)
- Calundann GW, Jaffe M, Proceedings of the Robert A. Welch Conference on Chemical Research. XXVI, Synthetic Polymers, Houston, Texas, 247 (1982)
- Krigbaum WR, Kotek R, Ishikawa T, Hakemi H, Preston J, Eur. Polym. J., 20, 225 (1984)
- Simoff DA, Porter RS, Mol. Cryst. Liq. Cryst., 110, 1 (1984)
- Kenig S, Polym. Eng. Sci., 27(12), 887 (1987)
- MacDonald WA, "High Value Polymers," ed. A.H. Fawcett, 428, The Royal Society of Chemistry, Cambridge (1991)
- Kuhfuss HF, Jackson WJ, U.S. Patent, 3,778,410 (1973)
- Griffin BP, Cox MK, Brit. Polym. J., 12, 147 (1980)
- Ober CK, Jin JI, Lenz RW, Adv. Polym. Sci., 59, 104 (1984)
- Dobb MG, McIntyre JE, Adv. Polym. Sci., 60, 63 (1984)
- Majnusz J, Lenz RW, Eur. Polym. J., 21, 565 (1985)
- Ballauff M, Makromol. Chem. Rapid Commun., 7, 407 (1986)
- Duran R, Ballauff M, Wenzel M, Wegner G, Macromolecules, 21, 2897 (1988)
- Marignan G, Malthete J, Noel C, Polymer, 29, 1318 (1988)
- Laivins GV, Macromolecules, 22, 3974 (1989)
- Suzuki T, Tanaka H, Nishi T, Polymer, 30, 1287 (1989)
- Brostow W, Polymer, 31, 979 (1990)
- Shin BY, Chung IJ, Polym. Eng. Sci., 30, 22 (1990)
- Roviello A, Sirigu A, Macromol. Chem., 183, 895 (1982)
- Antoun S, Lenz RW, Jin JI, J. Polym. Sci. A-Polym. Chem., 19, 1901 (1981)
- Griffin AC, Havens SJ, J. Polym. Sci. B-Polym. Phys., 19, 951 (1981)
- Ober CK, Jin JI, Lenz RW, Polym. J., 14, 9 (1982)
- Jo BW, Lenz RW, Jin JI, Makromol. Chem. Rapid Commun., 3, 23 (1982)
- Lee KS, Lee BW, Jung JC, Lee SM, Polym.(Korea), 13(1), 47 (1989)
- Lee KS, Won JC, Jung JC, Makromol. Chem., 190, 1547 (1989)
- Lee KS, Kim HM, Rhee JM, Lee SM, Makromol. Chem., 192, 1033 (1991)