화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.4, 366-370, June, 2000
곁사슬에 알콕시 그룹을 갖는 새로운 전방향족 폴리에스테르의 합성 및 특성
Synthese and Properties of New Wholly Aromatic Polyesters Having Alkoxy Group in the Side Chains
E-mail:
초록
곁사슬에 알콕시 그룹을 갖는 일련의 새로운 전방향족 폴리에스테르를 1,4-bis(p-hydroxybenxolyloxy)benzene과 2,5-dialkoxyterephthaloyl chloride를 사용하여 용액중합법에 의하여 합성하였다. 이들 중합체들은 H-NMR, FT-IR, DSC, TGA, 편광현미경 및 X-ray 분석기 등을 사용하여 여러 가지 특성조사를 행하였다. 중합체들의 고유점도(ηinh)는 0.56gL/g이었고, 유리전이온도(Tg), 용융온도(Tm) 및 초기 열분해온도(Tdi)의 경우 곁사슬의 길이가 증가함에 따라 감소하는 경향을 보였다. 곁사슬을 갖는 모든 중합체들은 용융온도 이상에서 네마틱 액정상임을 나타내는 schlieren 무늬가 관찰되었다. X-선 분석결과 n=1 인 중합체를 제외한 모든 중합체들은 낮은 각도 영역에서 예리한 회절곡선이 관찰되었고, 이들이 층상구조 형태로 결정화 되었음을 확인하였다.
A series of new wholly aromatic polyesters having alkoxy group in the side chains were synthesized by the solution polycondensation from 2,5-dialkoxyterephthaloyl chlorides with 1,4-bis(p-hydroxybenxolyloxy)benzene. The resulting polyesters have been characterized by H-NMR, FT-IR, DSC, TGA, optical polarizing microscope and x-ray diffractometer. The inherent viscosities (ηinh) measured at 35℃ in phenol/p-chlorophenol/1,1,2,2-tetrachloroethane(24/40/35 w/w/w) were 0.56~0.98 dL/g. The glass transition temperature (Tg) and the melting temperature(Tm) decreased with increasing the length of the alkoxy side chain. The initial decomposition temperatures as measured by TGA occurred at 338~369℃ in N2 gas and thermal stability decreased with increasing the length of the side chains. Above the melting temperature, the polymers showed the schieren textures which are indicative a nematic phase. WAXS-diffractograms showed that the polymers with side chains were crystalline at room temperature. Especially, analysis of a few sharp reflections in the small-angle region, suggests that these polymers crystallize to layered structures.
  1. Cottis SG, Economy J, Nowak BE, U.S. Patent, 3,637,595 (1972)
  2. Calundann GW, Jaffe M, Proceedings of the Robert A. Welch Conference on Chemical Research. XXVI, Synthetic Polymers, Houston, Texas, 247 (1982)
  3. Krigbaum WR, Kotek R, Ishikawa T, Hakemi H, Preston J, Eur. Polym. J., 20, 225 (1984) 
  4. Simoff DA, Porter RS, Mol. Cryst. Liq. Cryst., 110, 1 (1984)
  5. Kenig S, Polym. Eng. Sci., 27(12), 887 (1987) 
  6. MacDonald WA, "High Value Polymers," ed. A.H. Fawcett, 428, The Royal Society of Chemistry, Cambridge (1991)
  7. Kuhfuss HF, Jackson WJ, U.S. Patent, 3,778,410 (1973)
  8. Griffin BP, Cox MK, Brit. Polym. J., 12, 147 (1980)
  9. Ober CK, Jin JI, Lenz RW, Adv. Polym. Sci., 59, 104 (1984)
  10. Dobb MG, McIntyre JE, Adv. Polym. Sci., 60, 63 (1984)
  11. Majnusz J, Lenz RW, Eur. Polym. J., 21, 565 (1985) 
  12. Ballauff M, Makromol. Chem. Rapid Commun., 7, 407 (1986) 
  13. Duran R, Ballauff M, Wenzel M, Wegner G, Macromolecules, 21, 2897 (1988) 
  14. Marignan G, Malthete J, Noel C, Polymer, 29, 1318 (1988) 
  15. Laivins GV, Macromolecules, 22, 3974 (1989) 
  16. Suzuki T, Tanaka H, Nishi T, Polymer, 30, 1287 (1989) 
  17. Brostow W, Polymer, 31, 979 (1990) 
  18. Shin BY, Chung IJ, Polym. Eng. Sci., 30, 22 (1990) 
  19. Roviello A, Sirigu A, Macromol. Chem., 183, 895 (1982) 
  20. Antoun S, Lenz RW, Jin JI, J. Polym. Sci. A-Polym. Chem., 19, 1901 (1981)
  21. Griffin AC, Havens SJ, J. Polym. Sci. B-Polym. Phys., 19, 951 (1981)
  22. Ober CK, Jin JI, Lenz RW, Polym. J., 14, 9 (1982) 
  23. Jo BW, Lenz RW, Jin JI, Makromol. Chem. Rapid Commun., 3, 23 (1982) 
  24. Lee KS, Lee BW, Jung JC, Lee SM, Polym.(Korea), 13(1), 47 (1989)
  25. Lee KS, Won JC, Jung JC, Makromol. Chem., 190, 1547 (1989) 
  26. Lee KS, Kim HM, Rhee JM, Lee SM, Makromol. Chem., 192, 1033 (1991)