International Journal of Hydrogen Energy, Vol.36, No.12, 7066-7073, 2011
Oriented linear cutting fiber sintered felt as an innovative catalyst support for methanol steam reforming
A kind of oriented linear cutting fiber sintered felt as an innovative catalyst support for methanol steam reforming was proposed. Multiple long copper fibers fabricated by cutting method were arranged in parallel and then sintered together in a mold pressing equipment under the condition of high temperature and protective gas atmosphere. The characteristics of oriented linear cutting fiber sintered felt coated with Cu/Zn/Al/Zr catalyst for methanol steam reforming were experimental investigated under different GHSVs and reaction temperatures. Results indicated that the structure of sintered felt was the key influencing factor for the reaction performances on the condition of low GHSV or reaction temperature whereas the structure of sintered felt showed little influences with high GHSV or reaction temperature. By the analysis of SEM image and ultrasonic vibration testing method, it was found that the coarse surface pattern of cutting fiber could effectively enhance the adhesion intensity between the catalyst and the copper fibers, as well as present relatively large specific surface area in the microchannels. And hence the oriented linear cutting fiber sintered felt present better performances of methanol steam reforming than the oriented linear copper wire sintered felt on the condition of low GHSV or reaction temperature. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.