화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.36, No.11, 6882-6893, 2011
The analyses of the heat-up process of a planar, anode-supported solid oxide fuel cell using the dual-channel heating strategy
In the present study, a finite-volume (FV) model has been developed to investigate the thermal behavior, the heat-up time and the corresponding temperature gradient for an anode-supported planar SOFC during the heat-up process. A methane burner is employed for the heat-up of the SOFC. Effects of the burner power and the flow configuration on the temperature distribution, the effective maximum-temperature-gradient, the heat-up time and the required energy in the heat-up process are investigated. The numerical results obtained from the present study show that the single-channel mode is impractical for the SOFC heat-up due to the lengthy heat-up time. For a fixed-power burner, the required heat-up time for the counter-flow configuration is about 25% less than that of the co-flow configuration. For the counter-flow configuration, the temperature gradient is averagely about 17% larger than that for the co-flow configuration. The total energy required for the counter-flow configuration is about 20% less than that for the co-flow configuration. The counter-flow configuration is superior to the others as far as the heat-up time and the required energy are concerned, although it yields a relatively higher maximum-temperature-gradient. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.