International Journal of Hydrogen Energy, Vol.35, No.3, 1065-1073, 2010
Molecular characterization and homologous overexpression of [FeFe]-hydrogenase in Clostridium tyrobutyricum JM1
The H(2)-evoving [FeFe]-hydrogenase in Clostridium tyrobutyricum JM1 was isolated to elucidate molecular characterization and modular structure of the hydrogenase. Then, homologous overexpression of the hydrogenase gene was for the first time performed to enhance hydrogen production. The hydA open reading frame (ORF) was 1734-bp, encodes 577 amino acids with a predicted molecular mass of 63,970 Da, and presents 80% and 75% identity at the amino acid level with the [FeFe]-hydrogenase genes of Clostridium kluyveri DSM 555 and Clostridium acetobutylicum ATCC 824, respectively. One histidine residue and 19 cysteine residues, known to fasten one [2Fe-2S] cluster, three [4Fe-4S] clusters and one H-cluster, were conserved in hydA of C. tyrobutyricum. A 2327-bp DNA region containing the ORF and the putative promoter region was amplified and subcloned into a pJIR418 shuttle vector. The gene transfer of the recombinant plasmid into C. tyrobutyricum JM1 was performed by a modified electrotransformation method. Homologous overexpression of the [FeFe]-hydrogenase gene resulted in a 1.7-fold and 1.5-fold increase in hydrogenase activity and hydrogen yield concomitant with the shift of metabolic pathway. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.