화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.34, No.19, 8144-8151, 2009
Electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg20Ni10-xCox(x=0-4) alloys prepared by melt spinning
Nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg20Ni10-xCox (x = 0, 1, 2, 3, 4) were synthesized by melt-spinning technique. The microstructures of the as-cast and spun alloys were characterized by XRD, SEM and HRTEM. The electrochemical hydrogen storage characteristics of the as-cast and spun alloys were measured. The obtained results show that the substitution of Co for Ni does not change the major phase of Mg2Ni, but it leads to the formation of secondary phase MgCo2 and Mg. No amorphous phase forms in the as-spun alloy (x = 0), whereas the as-spun alloy (x = 4) holds a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni significantly heightens the glass forming ability of the Mg2Ni-type alloy. The substitution of Co for Ni and melt spinning significantly improve the electrochemical hydrogen storage performances of the alloys. When Co content x increases from 0 to 4, the maximum discharge capacity of the as-cast alloy increases from 30.3 to 113.3 mAh/g, and from 135.5 to 402.5 mAh/g for as-spun (30 m/s) alloy. The capacity retaining rate of the as-cast alloy after 20 cycles rises from 36.71 to 37.04%, and from 27.06 to 83.35% for as-spun (30 m/s) alloy, respectively. (c) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.