International Journal of Hydrogen Energy, Vol.33, No.17, 4501-4510, 2008
Cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production
A series of ZnIn2S4 photocatalysts was synthesized via a cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal method. These ZnIn2S4 products were characterized by X-ray diffraction (XRD), UV-visible absorption spectra (UV-vis) and scanning electron microscopy (FESEM). The effects of hydrothermal time and CTAB on the crystal structures, morphologies and optical properties of ZnIn2S4 products were discussed in detail. The photocatalytic activities of the as-prepared samples were evaluated by photocatalytic hydrogen production from water under visible-light irradiation. It was found that the photocatalytic activities of these ZnIn2S4 products decreased with the hydrothermal time prolonging while increased with the amount of CTAB increasing. The highest quantum yield at 420 nm of ZnIn2S4 photocatalyst, which was prepared through the CTAB (9.6 mmol)-assisted hydrothermal procedure for 1 h, was determined to be 18.4%. The optimum amount of Pt loaded for the ZnIn2S4 photocatalyst was about 1.0 wt%, under the present photocatalytic system. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.