화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.29, No.10, 1035-1046, 2004
Characterization of kilowatt-scale autothermal reformer for production of hydrogen from heavy hydrocarbons
Catalytic autothermal reforming is considered one of the most effective methods of producing hydrogen from heavy hydrocarbon fuels, such as diesel fuel, for fuel cell or emissions reduction applications. This article describes an investigation of the reactor characteristics and catalytic efficiency of a kilowatt-scale catalytic autothermal reformer currently being developed at Argonne National Laboratory. Dodecane and hexadecane were used individually as surrogates for diesel fuels to simply the reaction study and the interpretation of the test results. The reforming of these hydrocarbon fuels was examined at a variety of oxygen-to-carbon and steam-to-carbon ratios at gas hourly space velocities ranging from 10,000 to 100,000 h(-1). At steady state, the product composition correlated well with that calculated from thermodynamic equilibrium at a representative equivalent temperature. The oxygen-to-carbon ratio was determined to be the most significant operating parameter that influenced the reforming efficiency; the reforming efficiency (and the selectivity to COx) increased with increasing oxygen-to-carbon ratio up to about 0.42, at which value the maximum efficiency was attained. (C) 2003 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.