International Journal of Heat and Mass Transfer, Vol.70, 224-234, 2014
Experimental investigations in heat transfer and friction factor of magnetic Ni nanofluid flowing in a tube
A magnetic nanofluid was prepared by dispersing magnetic Ni nanoparticles in distilled water. The nanoparticles were synthesized by chemical co-precipitation method and characterised by X-ray diffraction and atomic force microscopy. The average particle size was measured by the dynamic light scattering method. Thermal conductivity and absolute viscosity of the nanofluid were experimentally determined as a function of particle concentration and temperature. In addition, the Nusselt number and friction factor were experimentally estimated as a function of particle concentration and Reynolds number for constant heat flux condition in forced convection apparatus with no phase change of the nanofluid flowing in a tube. The experiments were conducted for a Reynolds number range of 3000-22,000, and for a particle concentration range from 0% to 0.6%. The results indicate that both Nusselt number and friction factor of the nanofluid increase with increasing particle volume concentration and Reynolds number. For 0.6% volume concentration, the enhancement of Nusselt number and friction factor is 39.18% and 19.12%, respectively, as compared to distilled water under the same flow conditions. It was verified the classical Gnielinski and Notter-Rouse correlations under predict the Nusselt number of the nanofluid; therefore, new generalized correlations are proposed for the estimation of the Nusselt number and friction factor based on the experimental data. (C) 2013 Elsevier Ltd. All rights reserved.