Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.7, 1014-1019, November, 1999
PMDA/6FDA-PDA 공중합 폴리이미드의 잔류응력 거동
Residual Stress Behavior of PMDA/6FDA-PDA Copolyimide Thin Films
초록
Dianhydride로서 1,2,4,5-benzenetetracarboxylic dianhydried(PMDA)와 2,2''''-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride(6FDA)를, diamine으로서 1,4-phenylenediamine(PDA)을 사용하여 homopolyimides인 PMDA-PDA, 6FDA-PDA와 다른 당량비의 copolyimides를 각각의 ploy(amic acid)로부터 제조하였다. 이들 박막에 대하여, thin film stress analyzer(TFSA)를 이용하여 공중합체 폴리이미드 박막의 잔류 응력거동을 공정온도 (25~400oC)하에서 전구체의 열적 이미드화에 따라 in-situ로 측정하였고, WAXD분석을 통해 모폴로지 변화를 알아보았다. 다른 단량비로 이루어진 공중합체 포리이미드 박막의 잔류 응력 결과는 PMDA 문율이 증가함에 따라 잔류 응력이 큰 폭으로 감소하였고 순수 PMDA-PDA 폴리이미드에서는 압축모드로 5 MPa로 나타나
Copolyamic acid PMDA/6FDA-PDA(PAA) and homopolyamic acids PMDA-PDA(PAA) and 6FDA-PDA(PAA) were synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride(PMDA) and 2,2''-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride(6FDA) as the dianhydride and 1,4-phenylenediamine (PDA) as the diamine. Residual stresses were detected in-situ during themal imidization of the co- and homopolyimide precursors as a function of processing temperature over the range of 25~400℃ using thin film stress analyzer(TFSA), and morphological structures were investigated by WAXD. In comparison, the resultant residual stress of polyimide films composed of different compositions decreased with the increasing content of PMDA unit in the chain and was about 5 Mpa in compression mode for PMDA-PDA. In this study, the synthesis of random PMDA/6FDA-PDA copolyimide could be completed and compensate for the difficulty of process due to high Tg of PMDA-PDA and relatively higher stress of 6FDA-PDA. It showed that we can make a low level stress copolyimied having excellent mechanical properties by incorporating appropriate rod-like rigid structure PMDA-PDA unit into 6FDA-PDA polyimide backbone which generally shows higher stress due to rotational hinges such as bulky di(trifluoromethyl). Specially, PMDA/6FDA-PDA(0.9:0.1:1.0) satisfied excellent mechanical property and low level stress as an inter layer showing low dieletric constant.
- Manzione LT, "Plastic Packaging of Microelectronic Devices," 68, Van Nostland Reinhold, New York (1990)
- Mittal KL, "Polyimide: Synthesis, Characterization and Application," Plenum, New York (1985)
- Moghadam F, Moghadam K, Solid State Technol., 27, 149 (1984)
- Ree M, Chen KJ, Kirby DP, Katzenellenbogen N, Grischkowsky D, J. Appl. Phys., 72, 2014 (1992)
- Ikeda RM, J. Polym. Sci. C: Polym. Lett., 4, 353 (1966)
- Numata S, Fugisaki K, Kinjo N, Polymer, 28, 2282 (1987)
- Tong HM, Hu CK, Feger C, Ho PS, Polym. Eng. Sci., 26, 1213 (1970)
- Coburn JC, Pottiger MT, Noe SC, Senturia SD, Polymer, 32, 1271 (1993)
- Ginsburg R, Susko JR, Polyimides Vol. 1, ed. K.L. Mittal, 237, Plenum Press, New York (1984)
- Smith FW, Neuhaus HJ, Senturia SD, J. Electronic Mater., 16, 93 (1987)
- Wilson D, Stenzenberger HD, Hergenrother PM, "Polyimides," Chapman & Hall, New York (1990)
- Jou JH, Huang PT, Shen WP, J. Appl. Polym. Sci., 43, 857 (1991)
- Han H, Seo J, Ree M, Pyo SM, Gryte CC, Polymer, 39(13), 2963 (1998)
- Ree M, Swanson S, Volksen W, Polymer, 34, 1423 (1993)
- Ree M, Nunes TL, Volksen W, Czornyj G, Polymer, 6, 1228 (1992)
- Chung HS, Lee CK, Joe YI, Han HS, HWAHAK KONGHAK, 36(2), 329 (1998)
- Timosenko, J. Opt. Soc. Am., 11, 232 (1925)
- Wotman JJ, Evans RA, Appl. Phys., 36, 153 (1965)
- Ree M, Han H, Gryte CC, J. Polym. Sci. B: Polym. Phys., 33(3), 505 (1995)
- Han H, Gryte CC, Ree M, Polymer, 36(8), 1663 (1995)
- Ree M, Kim K, Woo SH, Chang H, J. Appl. Phys., 81, 698 (1997)
- Bssonov MI, Koton MM, Kudryyavtsev VV, Laius LA, "Polyimides: Thermally Stable Polymer," 1, Consltants Bureu, New York (1987)
- Oishi Y, Itoyo K, Kakimoto M, Imai Y, Polym. J., 21, 771 (1989)
- Rhee S, Park J, Moon B, Lee M, Macromol. Chem. Phys., 196(3) (1995)
- Leung L, Williams DJ, Karasz FE, Macknight WJ, Polym. Bull., 16, 457 (1980)