화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.6, 832-837, October, 1999
리튬이차전지용 정극활물질 LiMn2O4의 안정화(II) -수용액계에서 치환형 LiMn2O4의 안정성-
Stabilization of LiMn2O4 Electrode for Lithium Secondary Bttery (II) -Stability of Substituted LiMn2O4 in Aqueous System-
초록
수용애계에서 정극활물질의 안정성을 1 M LiOH 용액에서 Tafel plot를 통해서 측정하였으며, 이 때 LiMxMn2-xO4(x=0.05∼0.1) 전극은 100 mA에서 0.13∼0.15 mV의 과전압으로 LiMn2O4 전극보다 0.05 mV가 낮은 과전압을 나타냈다. 또한 전위변화에 따른 전해질의 전도도는 LiMxMn2-xO4가 스피넬 구조의 LiMn2O4보다 높고 나타났으며, Mn+2의 용액에 의한 용액저항은 상대적으로 낮게 나타났다.
Stability of a cathode material was determined by Tafel plot in 1 M LiOH solution. The stabilized LiMxMn2-xO4 (x=0.05∼0.1) electrode resulted in overpotential of 0.13∼0.15 mV at 100 mA. This overpotential was 0.05 mV lower than that of the spinel structured LiMn2O4 electrode. Conductivity test at various potentials showed that the conductivity of LiMxMn2-xO4 was higher than that of the spinel structured LiMn2O4 and the bulk resistance of LiMxMn2-xO4 due to the dissolution of Mn2+ was lowered.
  1. Shu ZX, McMillan RS, Murray JJ, J. Electrochem. Soc., 140, 922 (1993) 
  2. Macklin WJ, Neat RJ, Powell RJ, J. Power Sources, 34, 39 (1991) 
  3. Lubin F, Lecerf A, Broussely M, Labat J, J. Power Sources, 34, 161 (1991) 
  4. Barboux P, Tarascon JM, Shokoohi FK, J. Solid State Chem., 94, 185 (1991) 
  5. Lee CT, Lee JS, Kim HJ, J. Korean Ind. Eng. Chem., 9(2), 220 (1998)
  6. Lee JS, Lee CT, J. Korean Ind. Eng. Chem., 9(5), 774 (1998)
  7. Kanzaki Y, Taniguchi A, Abe M, J. Electrochem. Soc., 138, 333 (1991) 
  8. Dudley JT, Wilkinson DP, Thomas G, Levae R, Woo S, Blom H, Horvath C, Jukow MW, Denis B, Juric P, Aghakian P, Dahn JR, J. Power Sources, 35, 59 (1991)