화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.5, 784-788, August, 1999
QCA를 이용한 폴리피롤 박막의 점탄성 특성에 대한 전해질 영향
The Effect of Electrolyte on the Viscoelastic Characteristics of PPy Thin Film Using QCA
초록
본 연구에서는 Na2SO4, Na2CO3, SDS와 NaClO4 전해질용액에서 피롤단량체를 전기중합한 후, 중합시간과 전해질에 따른 피롤중합막의 점탄성 특성을 QCA를 이용하여 분석하였다. 그리고, 180초간 피롤을 중합하여 피막한 수정진동자를 0.1 M NaClO4 전해질용액에 넣어서 전위주사하여 각각의 전해질에 대한 폴리피롤박막의 산화환원특성을 분석하였다. 본 실험에서는 수정진동자의 한쪽 전극을 작용전극으로 사용하였으며, 각각의 실험에서 공진주파수, 공진저항, 전류 값을 측정하여 분석하였다. 본 연구 결과, ClO4-와 DS-, SO4-2, CO3-2의 순서로 피롤막이 탄성막에서 점차 점탄성막으로 변하여 가면서 중합됨을 알 수 있었다.
In this work, we analyzed the viscoelastic characteristics of electrochemically polymerized polypyrrole(PPy) thin film in various electrolyte solutions, Na2SO4, Na2CO3 and SDS + NaClO4, using QCA. The characteristics of redox reaction of electrochemically polymerized PPy thin film for 180 sec in each electrolyte, was investigated in 0.1 M NaClO4 electrolyte solution by cyclic voltammetry method. We used one side of quartz crystal electrode as a working electrode and measured the resonant frequency, resonant resistance and current as analytical parameters. As the results, we suggest that electrochemically polymerized PPy thin film in various electrolyte solutions shows tendency changing from elastic characteristics to viscoelastic one in the order of ClO4- + DS-, SO4-2 and CO3-2.
  1. Jang SM, Kim YH, Muramatsu H, Chem. Ind. Technol., 14(5), 457 (1996)
  2. 山下和男, 木谷日告, "導電性有機薄膜の 機能と 設計," 93, 日本表面科學會, 東京 (1988)
  3. Sauerbrey G, Z. Phyzik, 155, 206 (1959)
  4. Kanazawa KK, Gordon JG, Anal. Chim. Acta, 175, 99 (1985) 
  5. Muramatsu H, Tamiya E, Karube I, Anal. Chem., 60, 2142 (1988) 
  6. King WH, J. Anal. Chem., 36, 1735 (1964) 
  7. Hlavay J, Guibault GG, Anal. Chem., 36, 1735 (1964) 
  8. Nomura T, Nagamune T, Anal. Chim. Acta, 131, 97 (1981) 
  9. Shons H, Dorman F, Najarian J, J. Biomed. Res., 6, 565 (1972) 
  10. Muramatsu H, Dick JM, Tamiya E, Karube I, Anal. Chem., 59, 2760 (1987) 
  11. Itaya K, Ataka T, Toshima S, J. Am. Chem. Soc., 104, 4767 (1982) 
  12. Jang SM, Muramatsu H, 생물공학 News, 2, 60 (1995)
  13. Grabbe ES, Buck RP, Melroy OR, J. Electroanal. Chem., 59, 2760 (1987)
  14. Bruckenstein S, Shay M, J. Electroanal. Chem. Interfacial Electrochem., 280, 73 (1985)
  15. Okahata Y, Kimura K, Ariga K, J. Am. Chem. Soc., 111, 1363 (1987)
  16. Choi KJ, Kim YH, Chang SM, Egawa A, Muramatsu H, Anal. Chim. Acta, 386, 229 (1999) 
  17. Ye X, Muramatsu H, Kimura K, Sakuhara T, Ataka T, J. Electroanal. Chem. Interfacial Electrochem., 314, 279 (1991)
  18. Muramatsu H, Tamiya E, Karube I, Anal. Chem. Acta, 251, 135 (1991) 
  19. Muramatsu H, Ye X, Suda M, Sakuhara T, Ataka T, J. Electroanal. Chem. Interfacial Electrochem., 322, 311 (1992)
  20. Chang SM, Ebert B, Tamiya E, Karube I, Biosensor Bioelectronics, 6, 293 (1991) 
  21. Chang SM, Kim JM, Park JS, Son TI, Hiroshi M, J. Korean Ind. Eng. Chem., 9(1), 44 (1998)
  22. Kim JM, Chang SM, Muramatsu H, Polymer, 40(12), 3291 (1999) 
  23. Landau LD, Lifshitz EM, "Fluid Mechanics," 88, Pentagon, Oxford, England (1959)