화학공학소재연구정보센터
Energy Conversion and Management, Vol.79, 543-553, 2014
Experimental study of an air conditioning system to control a greenhouse microclimate
In this papper, a thermal model is developed to investigate the possibility to use the ground thermal energy for the greenhouse heating or cooling. A control system of the ground heat storing is integrated in a chapel greenhouse located in the premises of the Technology and Research Energy Center, Tunis, Tunisia. Polypropylene capillary heat exchangers, suspended in the air and buried into the ground of the greenhouse, are used to store or destore solar energy excess. During the day, the air-suspended exchangers recuperate the solar energy in excess. This recuperated energy is then stored into the ground through the buried exchangers. At night the stored thermal energy is brought back by the suspended exchangers to heat the greenhouse air. The purpose of this study is to contribute in the greenhouse microclimate control. In order to maintain the greenhouse air temperature at 20 degrees C, suitable for a defined agriculture, the solar energy and the cold water are respectively used for heating and cooling the greenhouse inside air. The design and construction of a chapel greenhouse equipped with the control system is carried out. The studied system is used, at the same time for; heating, cooling the greenhouse air and storing the solar energy in excess. Experiments were conducted during the years 2012-2013, to evaluate the effectiveness of the control system achieved. The measured values of the greenhouse air temperatures with and without the control system are discussed. (C) 2013 Elsevier Ltd. All rights reserved.