화학공학소재연구정보센터
Energy Conversion and Management, Vol.56, 1-7, 2012
A three-dimensional study on the formation and dissociation of methane hydrate in porous sediment by depressurization
A middle-scale reactor equipped with 16 thermocouples was used to investigate the formation and dissociation of methane hydrate in sediment in three dimensions. A method was proposed to form hydrate homogeneously distributed in sediment, i.e., using frozen sand instead of wet sand with pore water. With the formed hydrate sample, hydrate dissociation experiment by depressurization was carried out at a constant pressure of 1.0 MPa. It was found that gas hydrate dissociation occurs throughout the hydrate zone, which controlled by both mass transfer and heat transfer throughout the stages. The sharp-interface is hardly found during the hydrate dissociation. The thermal buffering was observed at the temperature of (271.5-272.2) K during the hydrate dissociation process. The ice arisen from hydrate dissociation slows the hydrate dissociation rate below the ice point, which will affect gas production rate. It may be more reasonable that the depressurization method is used in the initial stage and the thermal stimulation method is used in the later stage in the process of gas recovery from hydrate reservoir. (C) 2011 Elsevier Ltd. All rights reserved.