Computers & Chemical Engineering, Vol.55, 109-125, 2013
Optimal producer well placement and production planning in an oil reservoir
Most of the available literature on optimal well placement has employed numerical simulators in a black box manner linked to an external search engine. In this work, we formulate the contents of that box inside a mixed integer nonlinear programming model for optimal well placement. We provide a unified model that integrates the subsurface, wells, and surface levels of an upstream production project. It links the production plan with the aforementioned elements, and economics and market. This results in a complex spatiotemporal mixed integer nonlinear model, for whose solution we modify and augment an existing outer approximation algorithm. The model solution provides the optimal number of new producers, their locations, and optimal production plan over a given planning horizon. To our knowledge, this is the first contribution that uses mathematical programming in a real dynamic sense by honoring the constituent partial differential equations. (C) 2013 Elsevier Ltd. All rights reserved.
Keywords:Optimal well placement;Oil production planning;Mathematical programming;Oil reservoir modeling;Dynamic optimization