화학공학소재연구정보센터
Computers & Chemical Engineering, Vol.53, 55-69, 2013
Scheduling a multi-product pipeline network
Daily some millions barrels of oil are moved around the world in imports and exports and domestically within countries. While ships are the main mode for intercontinental transport, pipelines are the chief form of transcontinental transport, while regional and local transports is performed by trains and trucks. Despite high installation costs, pipelines are considered highly efficient as a mode for transporting large amounts of oil and oil products over long distances, because they offer lower operation costs, higher reliability rates, lower product loss rates, less environmental impact, and less susceptibility to adverse weather conditions than other modes. This study deals with a multi-product pipeline system that transports a set of oil products (diesel, gasoline and kerosene, for example), which have to be moved from points (operating areas) where they are produced or stored (refineries, terminals) to points where they are needed (other refineries, distribution centers, terminals, ports, customers) through a pipeline or set of pipelines. The present study contributes primarily by offering an efficient tool for the problem of scheduling multi-product pipeline networks. The methodology proposed takes the approach of discretizing both pipelines and planning horizon and combines an efficient MILP model with a post-processing heuristic. When compared with previous models, we propose a more efficient one in which the set of volumetric constraints is modeled in the form of knapsack cascading constraints and constraints on products in pipeline sections, which made for significantly improved performance in the experiments that were conducted. The proposed methodology thus constitutes an advance in terms of modeling the problem, making it feasible to solve problems increasingly close to the realities confronting oil industry operators. (C) 2013 Elsevier Ltd. All rights reserved.