Energy and Buildings, Vol.54, 252-258, 2012
Chiller sensor fault detection using a self-Adaptive Principal Component Analysis method
This paper presents a self adaptive chiller sensor fault detection strategy based on Principal Component Analysis (PCA) method, namely a self-Adaptive Principal Component Analysis (APCA) method. The original data set used to train the PCA model usually contains some error samples, whose useless residual subspace information make the threshold of Q-statistic higher than the expected threshold. This leads to a low sensitivity and low fault detection efficiency at low sensor fault levels. APCA is developed to automatically remove error samples in the original data set in order to improve fault detection efficiency especially for temperature sensor faults with absolute magnitude less than 1 C. The self adaptive process of APCA has been presented and been compared with the Normal Principal Component Analysis (NPCA) method. The APCA strategy is validated by the operational data of a screw chiller system in a real electric factory. The results show that the APCA method can significantly enhance the fault detection efficiency, and the symmetry for positive and negative fault levels with same absolute magnitude becomes better than NPCA method. (C) 2012 Elsevier B.V. All rights reserved.