화학공학소재연구정보센터
Energy, Vol.70, 143-148, 2014
Improved thermoelectric performance of a film device induced by densely columnar Cu electrode
In this study, it was found that the columnar Cu film is similar as a parallel microchannel which can create some sort of channels for the easy transport of electrons and phonons in the device. The p-Bi0.5Sb1.5Te3, n-Bi2Se0.3Te2.7 and Cu films were fabricated by a magnetron sputtering method. These films have been integrated into low-dimension cross-plane devices using mask-assisted deposition technology. The performance of the micro-device with densely columnar Cu film electrode has been tested, which was very superior to that of the device with ordinary structure electrode. For the typical device with 98 pairs of p/n couples, the output voltage and maximum power were up to 120.5 mV and 145.2 mu W, respectively, for a temperature difference of 4 K. The device could produce a 14.6 K maximum temperature difference at current of 160 mA. The response time to reach the steady condition was less than 2 S. The results prove that excellent performance of micro-device can be realized by integrating the densely columnar Cu electrode. (C) 2014 Elsevier Ltd. All rights reserved.