화학공학소재연구정보센터
Energy, Vol.53, 139-146, 2013
Modeling, nonlinear dynamical analysis of a novel power system with random wind power and it's control
The stability problem of power networks becomes increasingly important since the rapid development and broad application of wind energy technology. We continue to lack a well-established mathematical model to describe and characterize power systems associated with wind power in essence of random properties. Here, we present a novel model to solve this significant problem by incorporating the nonlinear dynamical theory and the fluctuation nature of wind energy. The model produces some interesting dynamical phenomena, e.g., routes to chaos. To eliminate the chaotic behavior which is disadvantageous to the stability and normal functioning of the whole system, we offer a fuzzy control approach to drive the system with uncertain parameters from chaotic states to steady states. The control method is validated by both numerical simulations and theoretical analysis. Our theory and control scheme can be expected to be potentially applicable in a variety of power systems with wind sources. (C) 2013 Elsevier Ltd. All rights reserved.