화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.3, 407-414, May, 1999
페롭스카이트형 산화물에서 일산화탄소에 의한 질소산화물의 환원반응
Catalytic Reduction of Nitric Oxide by Carbon Monoxide over Perovskite-Type Oxide
초록
능금산법으로 제조된 페롭스카이트형 산화물에서 CO에 의한 NO의 환원반응에 대한 연구를 행하였다. 촉매는 주로 Lanthanoid계 페롭스카이트를 사용하였고, 활성을 증가시키기 위해 A, B site에 Sr, Ba 및 Fe, Mn 등을 치환시켰다. LaCoO3 촉매에서 A site에 Sr을 일부 치환시키면 NO 전환율이 증가하였다. 한편 B site에 Fe나 Mn을 일부 치환시키면 NO의 전환율이 증가하였으나 Fe의 치환량이 커지면 오히려 전환율이 감소하였다. 한편 La0.6Sr0.4Co0.8Fe0.2O3 촉매에 SnO2나 MnO2를 혼합하면 촉매활성이 증가하는 상승효과를 보였다. 반응물에 첨가된 물은 촉매활성을 감소시켰으나 촉매에 대한 물의 작용은 어느 정도 가역적이었다. 또한 반응물에 첨가된 이산화황은 NO의 전환율을 감소시켰다.
We have studied the reduction of NO by CO over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution of metal into A or B site of perovskite oxides. In the LaCoO3 type catalyst, the partial substitution of Sr into A site enhanced the catalytic activity on the conversion of NO at less than 350℃. In the La0.6Sr0.4Co1-xFexO3 catalyst, the partial substitution of Fe or Mn into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. In addition, La0.6Sr0.4Co0.8Fe0.2O3 mixed with SnO2 or MnO2 showed the synergy effect on the reduction of NO. The introduction of water into reactants feed decreased the catalytic activity but the deactivation was shown to be reversible. The introduction of SO2 into reactants feed also decreased the catalytic activity
  1. Briggs WS, "Applied Industrial Catalysis," vol. 3, Academic Press, New York (1984)
  2. Lee SD, "Nitrogen Oxides and Their Effect on Health," Ann Arbor Publisher, Michigan, 382 (1980)
  3. Hightowar J, "The Catalytic Chemistry of Nitrogen Oxides," Plenum Press, New York (1975)
  4. Libby WF, Science, 171, 499 (1971) 
  5. Hong SS, Yang JS, Lee GD, React. Kinet. Catal. Lett., in press
  6. Voorhoeve RJH, Remeika JP, Johnson DW, Science, 180, 62 (1973) 
  7. Hong SS, Lee GD, Park JW, Park DW, Cho KM, Oh KJ, Korean J. Chem. Eng., 14(6), 491 (1997)
  8. Yang JS, Lee GD, Ahn BH, Hong SS, J. Ind. Eng. Chem., 4(4), 263 (1998)
  9. Anderson DJ, Sale FR, Powder Metall., 22, 14 (1979)
  10. Wadsley AD, "New Stoichiometric Compounds," p. 134, Academic Press, New York/London (1964)
  11. Jonker GH, van Santen JH, Physica, 19, 120 (1953) 
  12. Obayashi H, Jpn. J. Appl. Phys., 14, 330 (1975) 
  13. Voorhoeve RJH, J. Solid State Chem., 14, 395 (1975) 
  14. Cook RL, Sammuells AF, Solid State Ion., 45, 311 (1991) 
  15. Moon HD, Lee HI, J. Korean Ind. Eng. Chem., 7(3), 554 (1996)
  16. Yokoyama C, Misono M, Catal. Lett., 29(1-2), 1 (1994) 
  17. Inaba M, Kintaichi Y, Hamada H, Catal. Lett., 36(3-4), 223 (1996)
  18. Ueda A, Oshima T, Haruta M, Centi G, Environ. Catal. Soc. Chim. Italiana, 343 (1995)
  19. Li Y, Hall WK, J. Phys. Chem., 94, 6145 (1990) 
  20. Louis S, Raj V, Srinivasan, J. Catal., 65, 121 (1980) 
  21. Teraoka Y, Nakano K, Shangguan W, Kagawa S, Catal. Today, 27(1-2), 107 (1996) 
  22. Simonot L, Garin F, Maire G, Appl. Catal. B: Environ., 11(2), 181 (1997) 
  23. Nam IS, Catalysis, 3, 5 (1978)
  24. Solomosi F, Kiss J, J. Catal., 54, 42 (1978) 
  25. Torikai Y, Yahiro H, Misuno N, Iwamoto M, Catal. Lett., 9, 91 (1991) 
  26. Tao TFY, J. Catal., 36, 266 (1975)