화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.3, 354-361, May, 1999
제조 방법에 따른 Titanium Disilicide 막의 특성
The Characteristics of Titanium Disilicide Films following Manufacturing Methods
초록
티타늄을 물리증착시킨 후 열처리한 막과 플라즈마에 의해 무정형 실리콘을 증착시킨 후 열처리한 막은 양질의 결정성을 갖는 Si가 풍부한 티타늄 실리사이드가 형성되고, 열처리 과정에서 에피택시 성장을 위한 격자들의 회전에 의해 다양한 형태의 격자구조를 갖는다. 티타늄 실리사이드 막의 band gap은 플라즈마에 의해 a-Si:H 막을 증착시킨 후 열처리한 막이 수소의 탈착에 의해 제공된 dangling bond, a-Si 등의 영향을 받아 1.14∼1.165 eV의 값을 가진다. 물리증착하여 열처리한 막의 Urbach tail인 E0는 0.045∼0.05 eV 범위로 거의 일정하고, 플라즈마에 의해 a-Si:H 막을 증착시킨 후 열처리한 막의 결함수는 Ti/Si를 열처리했을 때 얻어진 결함수보다 약 2∼3배 정도 많은 것으로 나타났다.
The films annealed after physical deposition of titanium and chemical deposition of amorphous silicon by plasma were formed Si-rich titanium silicide with a good quality of crystallinity and had the various lattice structures due to orientation of lattices for epitaxy growth during annealing process. Band gap of the titanium silicide had 1.14∼1.165 eV and the films annealed after chemical deposition of a-Si:H by plasma were influenced by a-Si and the dangling bond offered by desorption of hydrogen. Urbach tail (E0) of the films annealed after physical deposition of Ti was nearly constant within a range of 0.045∼0.05 eV, and the number of defect in films annealed after chemical deposition of a-Si:H by plasma was about 2∼3 times more than that in annealed Ti/Si films.
  1. Lee S, Lee H, Jeon H, Jpn. J. Appl. Phys., 36, 7317 (1992) 
  2. Mann RW, Miles GL, Knotts TA, Rakowski DW,Clevenger LA, Harper JME, D'Heurle FM, Cabral C, J. Appl. Phys. Lett., 67, 3729 (1995) 
  3. Roy RA, Clevenger LA, Cabral C, Saenger KL, Brauer S, Jordan-Sweet J, Bucchignano J, Stephenson GB, Appl. Phys. Lett., 66, 1732 (1995) 
  4. Mann RW, Miles GL, Knotts TA, Rakowski DW, Appl. Phys. Lett., 67, 3729 (1995) 
  5. Kotaki H, Nakano M, Hayashida S, Kakinoto S, Mitsuhsashi K, Takagi J, Jpn. J. Appl. Phys., 34, 776 (1995) 
  6. Ma Z, Allen LH, Allman DDJ, J. Appl. Phys., 77, 4384 (1995) 
  7. Stephenson AW, Welland ME, J. Appl. Phys., 77, 563 (1995) 
  8. Raaijmakers IJMM, Kim KB, J. Appl. Phys., 67, 6255 (1990) 
  9. Van Loenen EJ, Fisscger AEMJ, Vander Veen JF, Surf. Sci., 155, 65 (1985) 
  10. Gong SF, Hentzell HTG, J. Appl. Phys., 68, 4542 (1990) 
  11. Jeon H, Sukow CA, Honeycutt JW, Rozgonyi GA, Nemanich RJ, J. Appl. Phys., 71, 4269 (1992) 
  12. Li XH, Carlsson JRA, Gong SF, Hentzell HTG, Appl. Phys., 72, 514 (1992) 
  13. Mishima Y, Yagishita T, J. Appl. Phys., 64, 3972 (1988) 
  14. Mouroux A, Zhang SL, Kaplan W, Ostling M, Petersson CS, Appl. Phys. Lett., 69, 975 (1996) 
  15. Katsumata H, Makita Y, Kobayashi N, Shibata H, Hasegawa M, Uekusa SI, Jpn. J. Appl. Phys., 36, 2802 (1997) 
  16. Dexter DL, Phys. Rev., 101, 48 (1956)