화학공학소재연구정보센터
Electrochimica Acta, Vol.113, 433-438, 2013
Effect of polydopamine surface coating on polyethylene separators as a function of their porosity for high-power Li-ion batteries
This study demonstrates the effect of polydopamine coating on separator membranes used in liquid electrolyte batteries as a function of membrane porosity. We select two typical separators that differed only in porosity. High-porosity (16H) and low-porosity (16L) separators are coated with polydopamine by simple dip-coating. Their properties are evaluated via scanning electronic microscopy (SEM) and determining the water contact angle, Gurley number, ionic conductivity, and uptake volume of liquid electrolyte. In addition, the effect of polydopamine coating on electrochemical properties is tested using CR2032 coin-type half-cells (LiMn2O4/Li metal). With enhanced hydrophilic properties of surfaces as keeping pore structures, both of polydopamine coated high and low porous separators show enhanced rate capability and cell performance compared to uncoated versions. The effect of polydopamine coating is greatly enhanced in the low-porosity separators, with up to 40% increase in power capability (at 5 C rate) and a 290% increase in cycle performance (after 500 cycles, at C/2 rate), compared to the high-porosity type (13% increase in power capability, 43% increase in cycle performance).(C) 2013 Elsevier Ltd. All rights reserved.