화학공학소재연구정보센터
Electrochimica Acta, Vol.95, 218-224, 2013
Pt supported on Mo2C particles with synergistic effect and strong interaction force for methanol electro-oxidation
Molybdenum carbide (Mo2C) particles on carbonized resin (C-Mo2C) were successfully synthesized through ionic exchange process. The diameter from 3 nm to 50 nm of the Mo2C particles can be easily controlled by adjusting the experimental parameters. Pt nanoparticles were then loaded on the C-Mo2C to form Pt/C-Mo2C electrocatalyst for methanol oxidation in acidic media. The above materials were characterized by XRD, TEM, TG, EDS, XPS and cyclic voltammograms measurements. The results show that Pt/C-Mo2C gives 1.7 times higher peak current density and 100 mV more negative onset potential than that of commercial Pt/C electrocatalyst at the same Pt loadings. Moreover, Pt/C-Mo2C shows higher electrochemical stability than that of Pt/C. The improved catalytic activity is due to the synergistic effect of Mo2C on Pt; the improved electrochemical stability is related to the strong interaction force between Pt and Mo2C. Since Pt/C-Mo2C carries higher catalytic activity and stability comparing with Pt/C, less Pt will be required for the same performance and it will in turn reduce the cost of fuel cell electrocatalyst. (c) 2013 Elsevier Ltd. All rights reserved.