화학공학소재연구정보센터
Electrochimica Acta, Vol.90, 246-253, 2013
A dual amplified electrochemical immunosensor for ofloxacin: Polypyrrole film-Au nanocluster as the matrix and multi-enzyme-antibody functionalized gold nanorod as the label
In this work, an electrochemical immunosensor, basing on a dual signal amplified strategy by employing a biocompatible polypyrrole film-Au nanocluster matrix as a sensor platform and multi-enzyme-antibody functionalized gold nanorod as an electrochemical detection label, is established for sensitive detection of ofloxacin (OFL). Firstly, polypyrrole film and Au nanoclusters were progressively fabricated onto the surface of a glassy carbon electrode via electropolymerization and electrochemical deposition, respectively. Such PPy-Au nanocomposite modified electrode was used to immobilize OFL-OVA, blocked with the blocking reagent, and then associated with the corresponding antibody. Secondly, gold nanorod (GNR) was synthesized to load horseradish peroxidase (HRP) and horseradish peroxidase-secondary antibody (HRP-Ab(2)), and the resulting nanostructure (multi-HRP-GNR-Ab(2)) was applied as the detection label. The fabrication process of the ordered multilayer structure and immunosensor were characterized by scanning electron microscopy (SEM) and electrochemical measurements, respectively. Finally, based on a competitive immunoassay, i.e., the association ability with the corresponding antibody between the captured antigen and free OFL in the solution, the fabricated immunosensor exhibited a sensitive response to OFL in the range from 0.08 to 410 ng/mL with a detection limit of 0.03 ng/mL. The current immunosensor exhibited good sensitivity, selectivity and long-term stability. This amplification strategy shows excellent promise for food safety monitoring of other antibiotics and a potential application in other immunosensors. (C) 2012 Elsevier Ltd. All rights reserved.