화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.1, 51-57, February, 1999
원자로 일차 냉각제 계통내 탈염공정의 양이온 교환수지상에서 니켈(Ni), 코발트(Co) 및 은(Ag) 이온의 흡착 특성
Adsorption Characteristics of Ni, Co and Ag Ions on The Cation Exchange Resin of Demineralization Process in Primary Coolant System of PWR
초록
원자로 정지시 냉각제 계통내 탈염 공정의 최적운전에 도움을 줄 목적으로 Amberite IRN 77 양이온 교환수지상에서 Ni(II), Co(II) 및 Ag(I) 이온의 흡착특성을 연구하였다. 양이온 교환수지상에서 Ni(II), Co(II) 및 Ag(I) 이온 각각의 흡착 메카니즘은 Langmuir isotherm에 잘 일치하였다. 양이온교환수지의 형태에 따른 영향으로서 H+- 형의 수지의 흡착 및 처리 용량은 Li+-형의 수지보다 우수하였다. 다성분계의 용액을 위한 연속식 이온교환공정에서 양이온교환수지의 흡착선택성은 Ni(II) Co(II)>Ag(I)였으며, 유속의 증가는 수지의 처리용량 뿐만 아니라 파과곡선의 기울기를 감소시켰다.
Adsorption characteristics of Ni(II), Co(II) and Ag(I) ions on the Amberite IRN 77 cation exchange resin have been studied to suggest the guide-line for the optimum operation of demineralization process in primary coolant system during the shut-down period of pressurized water reactor(PWR). The adsorption mechanism of each metal ion, Ni(II), Co(II) or Ag(I) ion, on a cation exchange resin was well coincided with Langmuir isotherm. The adsorption and treatment capacities of H+- form resin were higher than those of Li+- form resin. In the continuous ion exchange process for the solution of multi-component system, the selectivity of the resin was in increasing order of Ni(II) Co(II)>Ag(I). In addition, the increase of the flow rate decreased the treatment capacity of the resin as well as the slope of the breakthrough curve.
  1. Comley GCW, Prog. Nucl. Energy, 16, 41 (1985) 
  2. Shaw RA, "Recent Progress in LWR Radiation Field Control," BNES-4 (1985)
  3. 中島宣雄, 原子力工學, 33, 27 (1987)
  4. Bergmann CA, "Evaluation of Cobalt Sources in Westing-house Designed Three- and Four- Loop Plants," EPRI-NP-2681 (1982)
  5. Lister DH, "Corrosion Product Release in Light Water Reactors," EPRI NP-3460 (1984)
  6. Nishino Y, Asakura Y, Sawa T, Uchida S, J. Nucl. Sci. Technol., 28, 848 (1991)
  7. Wood CJ, "PWR Primary Shutdown and Startup Chemistry Guidelines," EPRI TR-101884s (1993)
  8. Wood CJ, "PWR Primary Water Chemistry Guidelines: Rivision 3," EPRI TR-105714 (1995)
  9. Westing House, "Chemistry Criteria and Specification for Westing House Pressurized Water Reactor," WCAP-7452 (1973)
  10. 이재설, "사용후 핵연료 저장 공정 장치 개발에 관한 연구," KAERI II/RR-3/90 (1990)
  11. Perry RH, Green DW, "Perry's Chemical Engineers' Handbook," MacGraw-Hill Co., New York (1984)
  12. Benefield LD, Judkins JF, Weand BL, "Process Chemistry for Water and Wastewater Treatment," Prentice-Hall Inc., New Jersey (1982)
  13. Helfferich F, "Ion Exchange," McGraw-Hill Co., New York (1962)
  14. Dorfner K, "Ion Exchangers," Walter de Gruyter & Co., Berlin (1991)