Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.7, 956-960, December, 1998
메탄올 수증기 개질반응을 위한 CuO/ZnO/TiO2 계 촉매의 활성 및 특성에 관한 연구
Studies on Activity and Characteristics of CuO/ZnO/TiO2 Catalysts for Methanol Steam Reforming
초록
Cu와 Zn의 몰비가 1/2, 1/1, 2/1인 촉매를 제조하여 메탄올 수증기 개질반응의 활성을 측정하고, 가장 좋은 활성을 보이는 Cu/Zn의 몰비가 2/1인 촉매를 선정하여 TiO2 의 첨가량을 달리하여, 메탄올 수증기 개질반응에 대한 활성을 측정하였다. 반응의 압력은 상압, 온도는 250℃, 수증기/메탄올 몰비 1.5, 접촉시간 0.1 gcat.hr/mL-feed의 조건에서 활성을 비교한 결과, TiO2의 첨가량이 3 mol%인 촉매의 경우 최대 전화율을 보였고, 전범위에서 수소로의 선택도는 매우 높았다. 촉매의 특성 분석결과 촉매의 비표면적보다는 N2O흡착, 분해방법에 의한 금속구리의 비표면적의 영향이 더욱 큼을 알 수 있었고, 적정 TiO2의 첨가로 금속구리의 비표면적을 높일 수 있었다. XRD, XPS분석결과 반응중에 아연의 산화상태는 달라지지 않으나, 구리는 대부분이 0가와 1가의 상태로 존재함을 확인하였다.
Cu-Zn and Cu-Zn-Ti catalysts for the steam reforming of methanol were prepared. This reaction was carried out at atmospheric pressure, 250℃, steam/methanol molar ratio 1.5, and contact time 0.1 g-cat.hr/mL-feed. In case of the catalyst with 3 mol% of TiO2, the activity was superior to that of catalysts without TiO2. The reaction products were mainly hydrogen and carbon dioxide. It was found that catalytic activity was not related to specific surface area but affected by metallic copper area which was measured by N2O decomposition and increased with the addition of TiO2 content. XPS and XRD showed that the oxidation state of zinc was not changed during reaction, but oxidation states of copper existed in Cu(0) or Cu(I).
- Dixon AG, Houston AC, Johnson JK, "An Automative Generation for the production of pure Hydrogen from Methanol," 7th IECEC, 1084 (1972)
- Ko YT, Rho YW, Chem. Ind. Technol., 13(1), 70 (1995)
- Amphlett JC, Evans MJ, Jones RA, Mann RF, Weir RD, Can. J. Chem. Eng., 59, 720 (1981)
- Amphlett JC, Evans MJ, Jones RA, Mann RF, Weir RD, Can. J. Chem. Eng., 63, 605 (1985)
- Amphlett JC, Mann RF, Weir RD, Can. J. Chem. Eng., 66, 950 (1988)
- Japan Patent, 60-110337 (1985)
- Japan Patent, 61-86946 (1986)
- Kobayashi H, Takezawa N, Minochi C, Chem. Lett., 1347 (1976)
- Kobayashi H, Takezawa N, Minochi C, Nozaki FJ, Chem. Lett., 1197 (1980)
- Kobayashi H, Takezawa N, Minochi C, J. Catal., 67, 487 (1981)
- Amphlett JC, Mann RF, Mcknight C, Weir RD, Soc. Auto. Eng., 772 (1985)
- Santacesaria E, Carra S, Appl. Catal., 5, 345 (1983)
- Iwasa N, Kudo S, Takahashi H, Masuda S, Takezawa N, Catal. Lett., 19, 211 (1993)
- Jiang CJ, Trimm DL, Wainright MS, Cant NW, Appl. Catal., 93, 245 (1993)
- Jiang CJ, Trimm DL, Wainright MS, Cant NW, Appl. Catal., 97, 145 (1993)
- Sholten JJF, Konvalinka JA, Trans. Faraday Soc., 65, 265 (1969)
- Evans JW, Wainright MS, Brigewater AJ, Young DJ, Appl. Catal., 7, 75 (1983)
- Huang TJ, Wang SW, Appl. Catal., 24, 287 (1986)
- Su TB, Rei MH, J. Chin. Chem. Soc., 38, 535 (1991)
- Kobayashi H, Takezawa N, Shimokawabe M, Takahashi K, "Preparation of Catalysis," ed. G. Poncelet, 3, 697-707, Elsevier Science Publishers, B.V., Amsterdam (1983)
- Monti DM, Cant NW, Trimm DL, Wainwright MS, J. Catal., 17, 100 (1986)
- Salmi T, Hakkarainen R, Appl. Catal., 49, 285 (1989)
- Agaras H, Carrella G, Appl. Catal. A: Gen., 45, 53 (1988)
- Monti DM, Wainright MS, Trimm DL, Cant NW, Ind. Eng. Chem. Prod. Res. Dev., 24, 397 (1985)
- Idem RO, Bakhshi NN, Ind. Eng. Chem. Res., 33(9), 2047 (1994)
- Idem RO, Bakhshi NN, Ind. Eng. Chem. Res., 33(9), 2056 (1994)
- Petrini G, Montino F, Bossi A, Garbassi F, "Preparation of Catalsis," ed. G. Poncelet, 3, 735-745, Elsevier, Science Publishers, B.V., Amsterdam (1983)