Journal of Chemical Physics, Vol.104, No.17, 6547-6559, 1996
A Numerical Test of Activated Rate Theories for Cusped and Smooth Potentials
A numerical study of the effect of dissipation on the radiationless transition rate in the adiabatic and solvent-controlled limits is presented. For light particle reactions, the nonlinearity of the potential surface in the vicinity of the barrier top is important, and the potential may be approximated as a cusped double well potential, provided that the nonadiabatic coupling is small compared to the thermal energy. Three different theoretical approaches for calculation of the thermally activated rate are analyzed and compared with exact numerical results. We find that Variational Transition State Theory (VTST) with a planar dividing surface, as well as the approach of Calef and Wolynes (CW), provide a good description of the rate of symmetric reactions. A rate expression suggested by Dekker is found to be the least accurate. The CW approach is most accurate in the strong damping regime, while VTST is better in the weak damping regime. The accuracy of both methods improves as the potential is smoothed. VTST and the CW expression are also found to give a reasonable description of asymmetric reactions, provided that the asymmetry is not too large.
Keywords:SPHERE ELECTRON-TRANSFER;TRANSITION-STATE THEORY;POLAR-SOLVENTS;RATE CONSTANTS;KRAMERS;DYNAMICS;BARRIER