화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.6, 835-841, November, 1998
석탄배합비율과 제조공정조건에 따른 활성탄의 물성변화
Physical Properties of Activated Carbon with Coal Blend Ratios and Manufacturing Conditions
초록
활성탄제조에 적합한 유연탄과 무연탄을 선정하여 활성탄을 제조하고, 유연탄과 무연탄의 혼합비율을 달리하였을 때 나타나는 물리적 특성을 규명하였다. 유연탄에 무연탄인 Dandong탄을 25, 50, 75 wt.%로 혼합하여 활성탄을 제조할 경우 활성탄 수율은 Dandong탄의 함량 증가에 따라 증가되었으나 겉보기 밀도는 유연탄의 성상에 관계없이 일정하게 나타났고, 흡착력을 나타내는 요오드가는 반대로 감소되었다. Fushun탄과 Dandong탄을 75:25 wt.%로 혼합한 후 활성화조건에 따른 기공특성을 관찰한 결과 기공분포는 활성화온도 850∼900℃에서 20Å 이하의 미세기공이 발달되었고, 830℃와 950℃에서는 중간기공이 발달되었다. 또한 제조된 석탄혼합 활성탄의 성능을 고찰하기 위해 상용화된 제품과 실험을 통해 흡착성능을 비교하였는데 경쟁력있는 흡착력을 갖는 것으로 확인되었다. 따라서 활성탄 제조시 탄화 및 활성화 과정에서 여러 가지 조업변수와 원료탄 혼합효과에 의해 그 특성이 달라짐이 확인되었다.
This study was devoted to the manufacturing process of activated carbon(AC) using and anthracite and bituminous coals which were regarded as appropriate for AC manufacturing, and the physcial properties a AC prepared with coal blends were characterized by the ultimate and proximate analysis. Generally, as the fraction of antheracite in AC from anthracite and bituminous coal blends was increased, AC yield was increased whereas iodine value(I2) was decreased. Being not related to mixing ratio of coal blends, the apparent density of AC remained constant. Pore development and iodine value of AC based on coal blends(Fushun and Dandong, 75:25 wt. %) were examined, varing carbonization and steam activation conditions. These results showed that the average pore diameter of AC was below 20Å in the activation temperature range of 850 to 900℃ and the iodine value was above 1000㎡/g. When the adsorption capacity of manufactured AC was compared with commercial AC, it is found that the AC from coal blends was comparable to the commercial AC. Therefore, it was confirmed that the characteristics of manufactured AC were changed with manufacturing conditions and the ratios and types of coal blends.
  1. 한국 에너지기술연구소, "중국석탄을 원료로 하는 고품위 활성탄 제조연구(2차년도)," (1996)
  2. Richard S, "The Blend does not Justify the Mean," AIE 7th Austrlian Coal Science Conference, December (1996)
  3. Horowitz HH, Mertzger G, Anal. Chem., 35, 1464 (1963) 
  4. Foss RM, Salyer IO, Wilson HS, J. Polym. Sci. A: Polym. Chem., 2, 3147 (1964)
  5. Hashimoto K, Kagaku Sosetsu, 9, 209 (1975)
  6. Kim SC, Hong IK, Choi IS, Kim CH, J. Ind. Eng. Chem., 2(2), 116 (1996)
  7. Murty HN, U.S. Patent, 4,149,994 (1979)
  8. Kim SC, Hong IK, Park KA, J. Ind. Eng. Chem., 3(3), 218 (1997)
  9. Kawahata M, Walker PL, "Proceedings 5th Carbon Conference," Pergamon Press, London, p. 251 (1962)
  10. Dubinin MM, Quart Rev., 9, 101 (1955)