Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.5, 742-748, October, 1998
석탄과 폴리프로필렌의 공동액화시 상승효과 및 반응기구
Synergistic Effects and Mechanism of Coal/Polypropylene Coliquefaction
초록
본 연구에서는 Alaskatks 아역청탄과 PP에 의한 공동액화실험을 통하여 상승효과 및 반응기구를 규명하고자 하였다. 반응온도 430℃에서 30분간 액화시, tetralin 4ml 첨가한 석탄과 PP 또는 LDPE의 공동액화는 석탄 또는 플라스틱의 단독액화에 비해 각각 17%, 15%의 상승효과를 나타냈으며 석탄과 PP의 공동액화가 석탄과 LDPE의 공동액화에 비해 액화율이나 상승효과 측면에서 더 높은 결과를 나타냈다. 또한 공동액화시 석탄의 경우 석탄과 tetralin에 의한 2차식, PP의 경우 0차식의 반응속도모델을 개발하여 실험결과를 모사하였으며 상관계수 0.99 이상으로 부합도가 매우 높았다. 반응온도가 410℃에서 470℃로 상승함에 따라 석탄 단위질량 변환에 필요한 tetralin 소요량이 0.4에서 1.0으로 증가하며 이는 tetralin이 액화유의 저분자화에 기여하는 것으로 GPC 분석결과 확인되었다. Tetralin은 PP 단독액화시 PP의 액화를 저해하지만, 석탄과 PP의 공동액화시 석탄에 우선적으로 수소공여용매 역할을 하므로 PP의 액화를 저해하지 못한다. 따라서 PP의 액화율은 증가하며 공동액화시 액화상승효과는 PP가 주도하는 것으로 나타났다.
Experiments have been conducted to investigate synergistic effects and mechanisms of the Alaskan subbituminous coal/polypropylene (PP). Coliquefaction of coal/PP gave the synergistic effect in yields by 17% compared to independent liquefactions of coal or PP at 430℃. To analyse coliquefaction mechanisms, the second and zeroth order kinetic models were developed for coal and PP conversions respectively. When the models were simulated to fit coliquefaction results, those represented results successfully with the correlation coefficient of 0.99. The amount of tetralin needed to liquefy unit mass of coal(β) was also calculated using the developed model. According to the calculated results, β increased from 0.4 to 1.0 as the coliquefaction temperature increased from 410℃ to 470℃. This indicated that tetralin lowered the molecular weight of oil produced, and this phenomenon was recognized by the GPC analyses. Furthermore, it was found that tetralin prohibited the liquefaction of PP when coal was not added. On the other hand, tetralin was believed to act as a hydrogen-donor solvent to coal rather than prohibit PP liquefaction during coliquefaction. Therefore, the liquefaction rate of PP increases and synergistic effects in oil yields are mainly due to the increase in PP liquefaction during coal/PP coliquefaction.
- Pradhan VR, Comolli AG, Lee LK, Popper G, U.S. DOE/PETC Contractors Conference, Pittsburgh, July 9 (1996)
- Gatsis JG, Nelson BJ, Humbach MJ, Contractor's Review Meeting, Pittsburgh, October 6-8 (1987)
- Nafsis DA, Humbach MJ, Gatsis JG, Final Report, DOE/PC/70002-T6 (1988)
- Huffman GP, Feng Z, Mahajan V, Sivakumar P, Jung H, Tierney JW, Wender I, Div. of Fuel Chemistry, ACS, 40(1), 34 (1995)
- Palmer SR, Hippo EJ, Blankenship M, Div. of Fuel Chemistry, ACS, 40(1), 29 (1995)
- Taghiei MM, Feng Z, Huggins FE, Huffman GP, Energy Fuels, 8(6), 1228 (1994)
- Rothenberger KS, Cugini AV, Ciocco MV, Anderson RR, Veloski GA, Div. of Fuel Chemistry, ACS, 40(1), 38 (1995)
- Orr EC, Tuntawiroon W, Ding WB, Bolat E, Rumpel S, Eyring EM, Anderson LL, Div. of Fuel Chemistry, ACS, 40(1), 44 (1995)
- Parker RJ, Carson DW, Div. of Fuel Chemistry, ACS, 40(1), 51 (1995)
- Sharma RK, Dadyburjor DB, Zondlo JW, Liu Z, Stiller AH, Div. of Fuel Chemistry, ACS, 40(1), 56 (1995)
- Huffman GP, Feng Z, Bailey D, Rockwell J, Zhao J, Shah N, Huggins FE, U.S. DOE/PETC Contractors Conference, Pittsburgh, July 9 (1996)
- Han C, Kim HS, Yun WL, Lee IC, Energy R. D., 15(1), 65 (1993)
- Wen CY, Lee ES, "Coal Conversion Technology," Addison-Wesley, 458 (1979)
- Kim HS, M.S. Thesis, Kwangwoon Univ. (1993)
- Robbins GA, Winschel RA, Burke FP, U.S. DOE/PETC Contractors Conference, Pittsburgh, July 9 (1996)
- Aczel T, Williams RB, Pancirov RJ, Karchmer JH, Final Report to ERDA under Contract No. E(46-1)-8007 September (1976)