화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.4, 509-515, August, 1998
커피폐기물을 이용한 활성탄의 제조:ZnCl2-활성화
The Preparation of Activated Carbon from Coffee Waste : ZnC12-Activation
초록
커피폐기물을 원료로 하여 염화아연으로 화학적 활성화시켜 커피활성탄 (activated coffee char) 을 제조하였다. 이 연구는 roasting과정, 탄화과정, 활성화, 그리고 수세 및 건조의 공정으로 수행되었다. Roasting 과정은 300∼400 ℃ 에서 10분간 수행되었다. 탄화과정의 적절한 조건은 650 ℃에서 1시간인 것으로 나타났다. 화학적 활성화에 있어서 가장 중요한 parameter는 활성화제와 coffee char의 화학비인 것을 알 수 있었다. N2 gas를 이용하여 77K에서 제조된 커피활성탄의 BET 비표면적과 BJH 세공용적을 측정하였다. 염화아연에 의해 활성화되어 제조된 coffee char의 비표면적이 1110∼1580m2/g로 분석되었으며 세공용적은 0.51∼0.81cm3/g로 각각 분석되었다. SEM은 세공과 coffee char의 표면관찰에 이용되었다. 분석결과, 활성화 표면과 많은 세공이 형성되어 있는 것을 보였다. 커피폐기물을 이용한 activated coffee char의 제조가 성공적으로 수행되었으며, 이는 폐기물을 이용한 자원 개발의 가능성을 보여주었다.
Activated coffee chars were prepared from coffee waste by chemical activation with zinc chloride. In this study, the following processes were carried out : roasting step, carobonization step, and washing and drying step. The roasting step of coffee waste was carried out at 300∼400 ℃ for 10 minutes. The optimum condition of carbonization was at 650℃ for 1 hour. The most important parameter in chemical activation of coffee char was found to be the chemical ratio of activation agents. Activated coffee chars prepared by various activation methods were characterized in terms of the nitrogen BET surface area, the BJH pore volume and pore size distribution at 77 K. The N2-BET surface areas and total pore volume of coffee chars prepared by the chemical activation with ZnCl2 were determined as about 1110-1580 m2/g and 0.51∼0.81 cm3/g, respectively. Scanning Electron Microscopy (SEM) was used to observe the porosity and surface of activated coffee chars. From the results of SHM analysis, it was shown that active surface and many pores were formed after the chemical activation. The preparation of the activated coffee char from coffee waste was successfully carried out, which previews a possibility for exploitation of resources by recycling the waste.
  1. Gergova K, Petrov N, Minkova V, J. Chem. Technol. Biotechnol., 56, 77 (1993)
  2. Gergova K, Petrov N, Butuzova L, Minkova V, Isaeva L, J. Chem. Technol. Biotechnol., 58, 321 (1993)
  3. Gergova K, Eser S, Carbon, 34, 879 (1996) 
  4. Tsai WT, Chang CY, Lee SL, Carbon, 35, 1198 (1997) 
  5. Ferro-Gracia MA, Carbon, 26, 363 (1988) 
  6. Iley M, Marsh H, Reinoso FR, Carbon, 11, 633 (1973) 
  7. Avom J, Mbadcam JK, Noubactep C, Germain P, Carbon, 35, 365 (1997) 
  8. Reinoso FR, Molina-Sabio M, Carbon, 30, 1111 (1992) 
  9. Ahmadpour A, Do DD, Carbon, 34, 471 (1996) 
  10. Martin-Gullon I, Asensio M, Font R, Marcilla, Carbon, 34, 1515 (1996) 
  11. Mattson JS, Mark HB, Activated Carbon, Marcel Dekker, Inc., New York (1971)
  12. Kdlec O, Varhanivova A, Zukal A, Carbon, 8, 321 (1970) 
  13. Girgis BS, Khalil LB, Tawfik TA, J. Chem. Technol. Biotechnol., 61(1), 87 (1994) 
  14. Walker PL, Rusinko F, Raats E, J. Phys. Chem., 59, 245 (1955) 
  15. Bewick M, Handbook of Organic Waste Conversion, VNR, Company (1980)
  16. Jung HS, The World of Coffee, B & C World Co. (1990)
  17. Salvador F, Sanchez C, Carbon, 34, 511 (1996) 
  18. Fraissard J, Conner CW, Physical Adsorption: Experiment, Theory and Application, Kluwer Academic Publisher (1997)
  19. Pan D, Jaroniec M, Klinik J, Carbon, 34, 1109 (1996) 
  20. Byrne CE, Nagle DC, Carbon, 35, 259 (1997) 
  21. You SH, Kim HS, Kim HH, J. Korean Ind. Eng. Chem., 8(4), 631 (1997)
  22. Floess JK, Kim HH, Edens G, Oleksy SA, Kwak J, Carbon, 30, 1025 (1992) 
  23. Kim HH, Park SJ, J. Korean Ind. Eng. Chem., 5(1), 105 (1994)
  24. Teng H, Ho JA, Hsu YF, Carbon, 35, 275 (1997) 
  25. Zielke U, Huttinger KJ, Hoffman WP, Carbon, 34, 1015 (1996) 
  26. Barret EP, Joyner LS, Halenda PP, J. Am. Chem. Soc., 73, 373 (1951) 
  27. 김건, 석사학위논문, 서울여자대학교 (1990)
  28. 김춘호, 농산물을 이용한 활성탄, G7-1차년도 보고서, 한국에너지기술연구소 (1997)