화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.4, 475-480, August, 1998
고밀집 Glassy Carbon 섬유 다발체 전극 전해계를 이용한 금속 이온의 in-situ 전해 역추출 특성 연구
A Study on in-situ Electrolytic Stripping of a Metal Ion by Using a Highly Packed Glassy Carbon Fiber Column Electrode System
초록
본 연구에서는 고밀집 glassy carbon (GC) 섬유 다발체 전극 전해계를 사용하여 우라늄 (VI)를 함유한 유기상과 질산 수용상의 혼합상에서 전해 역추출시 우라늄 (VI) 환원 전해특성 연구가 수행되었고, 이에 관한 전해 역추출 모델을 제시하였다 우라늄 (VI) 전해환원 반응은 혼합상 내의 수용상에서 보다 혼합상 내의 유기상에서 빨리 일어났다. 유기상의 유속이 증가하는 경우 역추출 과정에서 유기상 내 우 라늄 이온의 확산 저항 증가에 의해서 수용상으로의 역추출은 증가하다 일정하게 되었으며, 수용상 유속 변화는 총 우라늄 (VI) 환원전류에는 영향을 주지 않았다. 전해반응이 없는 경우보다 전해 반응이 동반되는 경우 우라늄 역추출이 보다 효과적으로 이루어 짐을 알 수 있었다.
A study on the electrochemical reduction of uranium (Ⅵ) to uranium (Ⅳ) was carried out in the mixed phases of an organic phase with uranium (Ⅵ) to uranium (Ⅳ) and aqueous phase of nitric acid by use of a highly packed glassy carbon (GC) fiber column electrode system, and a model for in-situ electrolytic stripping of uranium (Ⅵ) was suggested. The electrochemical reduction of uranium (Ⅵ) occurred faster in organic phase than in aqueous phase of the mixed phases. The uranium sstripping yield increased and then became constant with the increase of organic flow rate of the electrolytic system due to the increase of diffusion resistance of uranium ions in the organic phase into the aqueous phase. Aqueous flow rate, on the other hand, didn't affect the total uranium (Ⅵ) reduction current in the system. The system combined with electrochemical reduction was confirmed to be much more effective than the simple system without it in stripping uranium.
  1. Yoshida Z, Tachikawa E, Nucl. Eng. Jpn., 38, 48 (1992)
  2. Couper AM, Pletcher D, Walsh FC, Chem. Rev., 90, 837 (1990) 
  3. Stock JT, Orna MV, "Electrochemistry, Past and Present," ACs Symp. Ser. No. 390, American Chemical Society (1989)
  4. Petrich G, Galla U, Goldacker H, Schmieder H, Chem. Eng. Sci., 41, 981 (1986) 
  5. Feess H, Wendt H, Chem. Ing. Tech., 53, 808 (1981) 
  6. Kihara S, Yoshida Z, Aoyagi H, Bunseki Kagaku, 40, 309 (1991)
  7. Kim KW, Byeon KH, Lee EH, Yoo JH, Park HS, J. Korean Ind. Eng. Chem., 7(4), 743 (1996)
  8. Kim KW, Lee EH, Yoo JH, "The Fourth Japan-Korea Symposium on Separation Technology," 323 (1996)
  9. Kim KW, Byeon KH, Lee EH, Yoo JH, Park HS, J. Korean Ind. Eng. Chem., 8(3), 416 (1997)
  10. Schulz WW, Navratil JD, Talbot AE, "Science and Technology of Tributyl Phosphate," Vol. I, Vol. III, CRc Press Inc., Florida (1984)
  11. Benedit M, Pigford TH, Levi HW, "Nuclear Chemical Engineering," Second Ed., McGraw-Hill Book Co. (1981)
  12. He JH, Zang QX, ACS Symp. Ser. No. 117, Actinide Separation, 317 (1986)
  13. Faumgartner F, Schmieder H, Radiochim. Acta, 25, 191 (1978)
  14. Kim KW, Lee EH, Shin YJ, Yoo JH, Park HS, J. Korean Ind. Eng. Chem., 7(2), 228 (1996)
  15. Kim KW, Lee EH, Shin YJ, Yoo JH, Park HS, J. Electrochem. Soc., 143(9), 2717 (1996) 
  16. Kim KW, Kim JD, Aoyagi H, Yoshida Z, J. Nucl. Sci. Technol., 31, 329 (1994)
  17. Watson SB, RAiney RH, "Modification of the SEPHIS Computer Code for Calculating the PUREX Solvent Extraction System," ORNL-TM 5123 (1975)