화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.3, 361-363, June, 1998
Faujasite 표면 수산기의 산성에 관한 양자화학적 해석
Quantum Chemical Calculations of Surface Hydroxyl Groups as Acid Site
초록
Faujasite 표면 수산기를 나타내는 cluster 모델의 전체에너지, 쌍극자모멘트, Wiberg결합차수 및 형식전하를 CNDO/2법을 이용하여 계산하였다. 이에 관한 양자화학적 고찰은 faujasite 표면 수산기의 산세기가 그 기하학적 구조와 Si/Al비에 의존되어 있음을 보여준다. B산성의 세기는 가교형 수산기가 독립형 수산기에 비해 컸었다. 모델분자들의 구조적 안정성은 Si/Al비가 클수록 증가하였다.
The CNDO/2 calculations have been applied on cluster models for the representative hydroxyls on faujasite surface to get total energies, dipole moments, Wiberg bond orders and formal charge densities. Quantum chemical calculations indicate that the acid strength of surface hydroxyls of faujasite depends on the geometry of hydroxyls and the Si/Al ratios of framework. The Br nsted acid strength of bridging hydroxyl is higher than that of isolated hydroxyls. The stabilities of cluster models increased with increase of the Si/Al ratios.
  1. Jacobs PA, "Carboniogenic Activity of Zeolites," Elsevier, Amsterdam (1977)
  2. Collignon E, Mariani M, Moreno S, Remy M, Poncelet G, J. Catal., 166(1), 53 (1997) 
  3. Kuehne MA, Kung HH, Miller JT, J. Catal., 171(1), 293 (1997) 
  4. Karge HG, Hatada K, Zhang Y, Fiedorow R, Zeolites, 3, 13 (1983) 
  5. Katada N, Igi H, Kim JH, Niwa M, J. Phys. Chem. B, 101(31), 5969 (1997) 
  6. Kobe JM, Gluszak TJ, Dumesic JA, Root TW, J. Phys. Chem., 99(15), 5485 (1995) 
  7. Gil B, Broclawik E, Datka J, Klinowski J, J. Phys. Chem., 98(3), 930 (1994) 
  8. Cimini F, Prins R, J. Phys. Chem. B, 101(27), 5285 (1997) 
  9. Hunger M, Horvath T, J. Catal., 167(1), 187 (1997) 
  10. Liu SB, Lin TS, Yang TC, Chen TH, Hong EC, Ryoo R, J. Phys. Chem., 99(20), 8277 (1995) 
  11. Jirka I, Bosacek V, Zeolites, 11, 77 (1991) 
  12. Melchior MT, Vaughan DE, Pictroski CF, J. Phys. Chem., 99(16), 6128 (1995) 
  13. Takaishi T, J. Phys. Chem., 99(27), 10982 (1995) 
  14. Barthomeuf D, J. Phys. Chem., 97, 10092 (1993) 
  15. Blumenfeld AL, Coster D, Fripiat JJ, J. Phys. Chem., 99(41), 15181 (1995) 
  16. Beran S, J. Phys. Chem., 89, 5589 (1985)
  17. Zhidomirow GM, Kazansky VB, Adv. Catal., 34, 131 (1986)
  18. Ursenbach CP, Madden PA, Stich I, Payne MC, J. Phys. Chem., 99(17), 6697 (1995) 
  19. Nortier P, Borosy AP, Allavena M, J. Phys. Chem. B, 101(8), 1347 (1997) 
  20. Dewar MJS, J. Phys. Chem., 97, 5897 (1993) 
  21. Pople JA, Beveride, "Apporoximate Molecular Orbital Theory," McGraw-Hill, New York (1970)
  22. Beran S, J. Phys. Chem., 86, 111 (1982) 
  23. Olson DH, J. Phys. Chem., 74, 2758 (1970) 
  24. Kim JT, Kim Mc, Okamoto Y, Imanaka T, J. Catal., 115, 319 (1989) 
  25. Miessner H, Kosslick H, Lohse U, Parlitz B, Tuan VA, J. Phys. Chem., 97, 9741 (1993) 
  26. Wiberg KB, J. Am. Chem. Soc., 90, 59 (1968)