화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.2, 278-285, April, 1998
금속산화물을 이용한 유동층반응기에서 배연탈황특성
The Characteristics of Desulfurization using Metal Oxides in a Fluidized Bed Reactor
초록
배출가스중의 SO2 제거를 위하여 다양한 금속산화물로 구성된 천연망간광석, 철광석, CuO/γ-Al2O3등을 흡착제로 사용하여 고정층반응기에서 흡착용량실험을 하였다. 또한 흡착제중 흡착용량이 떨어지는 철광석을 제외한 두 가지 흡착제를 이용하여 유동층반응기에서 유속, 온도, 입자크기 등의 조업조건에 따른 SO2 흡착실험을 수행하였다. 모든 흡착제에서 온도가 증가할수록 흡착량이 증가하는 화학흡착반응을 보였고 유동층반응기에서 U0/Umf 및 U0-Umf와 같은 유속조건에 따라 입자 크기에 따른 흡착량의 변화가 다르게 나타났으며 유동층반응기 성능식으로부터 반응속도상수를 얻었다. 이 실험을 통하여 천연망간광석이 유동층반응기에서 SO2 흡착제로의 사용가능성을 확인할 수 있었다.
In a fixed bed reactor, adsorption capacity of SO2 in simulated flue gases was investigated with NMO(natural manganese ore), composed of various metal oxides, iron ore and CuO/γ-A12O3 as adsorbents. The experiment carried out in a fluidized bed reactor with variables such as gas velocity, temperature and particle size. Iron ore was excluded in the fluidized bed reactor experiment for the lower adsorption capacity. The adsorption of SO2 in metal oxide is a typical chemisorption because the adsorption capacity of all adsorbents increased with temperature. The effect of particle size on the adsorption capacity was varied with the ratio, U0/Umf and the difference of U0-Umf. U0 is the gas velocity, Umf is the minimum fluidization gas velocity. U0/Umf and U0-Umf explain the behavior of the gas and solids in the fluidized bed reactor. From the performance equation of the fluidized bed reactor, kinetic reaction rate constants were obtained by the non-linear least square method. The adsorption capacity of NMO proved the potential use of SO2 adsorbents.
  1. 석탄 통계 월보, 통상산업부, 7, 112 (1995)
  2. 에너지 통계 월보, 에너지경제연구원, 3, 241 (1996)
  3. "대기오염 저감기술 조사분석 및 기술개발 계획," 한국동력자원연구소, 45 (1990)
  4. Harriott P, Markussen JH, Ind. Eng. Chem. Res., 31, 373 (1992) 
  5. Genti G, Passarini N, Perathoner S, Riva A, Stella G, Ind. Eng. Chem. Res., 31, 1963 (1992) 
  6. Cho MH, Lee VT, J. Chem. Eng. Jpn., 16, 127 (1983)
  7. Best RJ, Yates JG, Ind. Eng. Chem. Process Des. Dev., 16, 347 (1997)
  8. Koballa TE, Dudukovic MP, AIChE Symp. Ser., 73, 199 (1970)
  9. Yates JG, Bests RJ, Ind. Eng. Chem. Process Des. Dev., 15, 239 (1976) 
  10. Uysal BE, Aksahin I, Yucel H, Ind. Eng. Chem. Res., 27, 434 (1988) 
  11. Puncochar H, Drahos J, Cermak J, Selucky K, Chem. Eng. Commun., 35, 81 (1985)
  12. Hong SC, Cho BL, Doh DS, Choi CS, Powder Technol., 60, 215 (1990) 
  13. Hong SC, Ph.D. Dissertation, Korea Univ., Seoul, Korea (1990)
  14. Cha WS, Ph.D. Dissertation, Korea Univ., Seoul, Korea (1993)
  15. Geldart D, Powder Technol., 7, 285 (1973) 
  16. Keuster JC, Mize JH, "Optimization Techniques with Fortran," 1, 240, McGraw-Hill, New York (1973)
  17. Sit SP, Grace JR, Chem. Eng. Sci., 36, 257 (1987)
  18. Szekely J, Evans JW, Sohn HY, "Gas-Solid Reactions," 1, 17, Academic Press, New York (1976)
  19. Darton RC, LaNauze RD, Davidson JF, Harrison D, Trans. Inst. Chem. Eng., 55, 274 (1977)