Bioresource Technology, Vol.164, 402-407, 2014
Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell
Performance of a two-chamber microbial fuel cell (MFC) was evaluated with the influence of cathodic dissolved oxygen (DO). The maximum voltage, coulombic efficiency and maximum power density outputs of MFC decreased from 521 to 303 mV, 52.48% to 23.09% and 530 to 178 mW/m(2) with cathodic DO declining. Furthermore, a great deal of total phosphorus (TP) was removed owing to chemical precipitation (about 80%) and microbial absorption (around 4-17%). COD was first removed in anode chamber (>70%) then in cathode chamber (<5%). Most of nitrogen was removed when the cathodic DO was at low levels. Chemical precipitates formed in cathode chamber were verified as phosphate, carbonate and hydroxyl compound with the aid of scanning electron microscope capable of energy dispersive spectroscopy (SEM-EDS), X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). (C) 2014 Elsevier Ltd. All rights reserved.