화학공학소재연구정보센터
Bioresource Technology, Vol.130, 1-7, 2013
Process optimization and performance evaluation on sequential ionic liquid dissolution-solid acid saccharification of sago waste
The production of reducing sugars from sago waste via sequential ionic liquid dissolution-solid acid saccharification was optimized in this study. Ionic liquid dissolution of sago waste with 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was conducted prior to the solid acid saccharification with Amberlyst 15 (A15). The effect of time, temperature and substrate loading during dissolution reaction; and the effect of time, temperature and catalyst loading during saccharification reaction were examined by applying central composite design (CCD) separately. Both dissolution and saccharification reactions were respectively modeled into quadratic polynomial equations with good predictive accuracies. A high reducing sugars yield of 98.3% was obtained under the optimized conditions, i.e. dissolution at 1.75 h, 160 degrees C, 1.5% substrate loading, and saccharification at 0.5 h, 130 degrees C,4% catalyst loading. From comparison studies of different saccharification schemes, the sequential ionic liquid dissolution-solid acid saccharification has proven to be a potential method in reducing sugars production from the lignocellulosic biomass. (C) 2012 Elsevier Ltd. All rights reserved.